Advertisement

Trees III pp 317-338 | Cite as

Maritime Pine (Pinus pinaster Sol.)

  • M. Rancillac
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 16)

Abstract

The genus Pinus is the most important among the Conifers, with about 80 species, one of which is the maritime pine, Pinus pinaster Sol. (2n = 24). It is a resinous tree with persistent and very long needles two or three of which are grouped into fascicles with a basal sheath. Huge female cones, 12–15 cm high, consist of many fertile scales, each bearing two winged seeds, which are spread by the wind in the third year after pollination. They have a fleshy endosperm surrounding the 6–7-mm-long embryo, which includes five to nine cotyledons. After outside soil germination, tree growth occurs by one or two annual sap flushes that set successive growths of branches around the trunk. Adult, 20–35-m-tall trees (Fig. 1) have a thick cracked bark, dark purple outside, dark red inside. They grow in noncalcareous soils.

Keywords

Mycorrhizal Fungus Mother Tree Pinus Pinaster Rooted Cutting Pisolithus Tinctorius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boullard B (1975) Un problème d’écologie forestière: les mycorhizes. In: Pesson P (ed) Ecologie forestière. Gauthiers Villars, Paris, pp 175–192Google Scholar
  2. Campbell RA, Durzan DJ (1975) Induction of multiple buds and needles in tissue culture of Piceaglauca. Can J Bot 53: 1652–1657CrossRefGoogle Scholar
  3. Chaperon H (1979) Maturation et bouturage des arbres forestiers. In: AFOCEL (ed) Micropropagation d’arbres forestiers. AFOCEL Et Rech 12: 19–31Google Scholar
  4. Chaperon H (ed) (1986) La culture du pin maritime en Aquitaine. AFOCEL, ParisGoogle Scholar
  5. Chaperon H (1989) De l’intensification de la culture du pin maritime. In: AFOCEL (ed) Ann Rech Sylv 1988: 285–326Google Scholar
  6. Cheng TY (1976) Vegetative propagation of western hemlock (Tsuga heterophylla) through tissue culture. Plant Cell Physiol 17: 1347–1350Google Scholar
  7. David A, David H (1975) Influence de diverses conditions de nutrition sur le développement d’extrémités de jeunes racines de Pinus pinaster Sol. en culture in vitro. C R Acad Sci Paris 281: 1373–1376Google Scholar
  8. David A, David H (1977) Manifestations de diverses potentialités organogènes d’organes ou de fragments d’organes de pin maritime (Pinus pinaster Sol.) en culture in vitro. C R Acad Sci Paris 284: 627–630Google Scholar
  9. David A, David H (1979) Isolation and callus formation from cotyledon protoplasts of pine (Pinus pinaster). Z Pflanzenphysiol 94: 173–177Google Scholar
  10. David A, David H, Faye M, Isemukali K (1979) Culture in vitro et micropropagation du pin maritime. In: AFOCEL (ed) Micropropagation d’arbres forestiers. AFOCEL Et Rech 12: 33–40Google Scholar
  11. David A, David H, Mateille T (1982a) In vitro adventitious budding on Pinus pinaster cotyledons and needles. Physiol Plant 56: 102–107CrossRefGoogle Scholar
  12. David A, David H, Mateille T (1982b) Evaluation of parameters affecting the yield, viability and cell division of Pinus pinaster protoplasts. Physiol Plant 56: 108–113CrossRefGoogle Scholar
  13. David A, Faye M, Rancillac M (1983) Influence of auxin and mycorrhizal fungi on the in vitro formation and growth of Pinus pinaster roots. Plant Soil 71: 501–505CrossRefGoogle Scholar
  14. David H, lsemukali K, David A (1978) Obtention de plants de pin maritime (Pinus pinaster Sol.) à partir de brachyblastes ou d’apex caulinaires de très jeunes sujets cultivés in vitro. C R Acad Sci Paris 287: 245–248Google Scholar
  15. Dumas E (1987) Micropropagation d’un clone âgé de pin maritime en vue de l’obtention de pieds-mères. In: AFOCEL (ed) AFOCEL Ann Rech Sylv 1986: 95–107Google Scholar
  16. Faye M, Rancillac M, David A (1981) Determinism of the mycorrhizogenic root formation in Pinus pinaster Sol. New Phytol 87: 557–565CrossRefGoogle Scholar
  17. Fortin JA, Piche Y, Lalonde M (1980) Technique for the observation of early morphological changes during ectomycorrhiza formation. Can J Bot 58: 361–365CrossRefGoogle Scholar
  18. Franclet A (1979) Rajeunissement des arbres adultes en vue de leur propagation végétative. In: AFOCEL (ed) Micropropagation d’arbres forestiers. AFOCEL Et Rech 12: 3–18Google Scholar
  19. Franclet A (1987) Introductive report. In: Ducote G, Jacob M, Simeon A (eds) Plant micropropagation in horticultural industries. Florizel 87. Presses Univ, Liège, pp 23–40Google Scholar
  20. Franclet A, David A, David H, Boulay M (1980) Première mise en évidence morphologique d’un rajeunissement de méristèmes primaires caulinaires de Pin maritime âgé (P. pinaster Sol.). C R Acad Sci Paris 290: 927–930Google Scholar
  21. Gautheret RJ (ed) (1959) La culture des tissus végétaux. Masson, ParisGoogle Scholar
  22. Harley JL (ed) (1969) The biology of mycorrhiza, 2nd edn. Polunin, Hill Books, LondonGoogle Scholar
  23. Heller R (1953) Recherches sur la nutrition minérale des tissus végétaux cultivés in vitro. Ann Sci Nat Bot Biol Veg 14: 1–223Google Scholar
  24. Jonard R (1986) Micrografting and its applications to tree improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1: Trees I. Springer, Berlin Heidelberg New York, pp 31–48Google Scholar
  25. Margara J (1977) La multiplication végétative de la betterave (Beta vulgaris L.) en culture in vitro. C R Acad Sci Paris 285: 1041–1044Google Scholar
  26. Melin E (1962) Physiological aspects of mycorrhizae of forest trees. In: Kozlowski TT (ed) Tree growth. Ronald, New York, pp 247–263Google Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  28. Rancillac M (1979a) Mise au point d’une méthode de multiplication végétative in vitro du pin maritime (Pinus pinaster Sol.) pour la constitution de clones à partir de semences. In: AFOCEL (ed) Micro-propagation d’arbres forestiers. AFOCEL Et Rech 12: 41–48Google Scholar
  29. Rancillac M (1979b) Morphologie du système racinaire de Pinus pinaster Sol. sur bourgeons isolés ou sur plantules entières in vitro; mycorhization. In: C R 104 Cong Soc Savantes, Bordeaux, Fasc. II. Bibl Natl, Paris, pp 377–386Google Scholar
  30. Rancillac M (1981) Perspectives d’application des cultures d’organes in vitro à la multiplication végétative du pin maritime, Pinus pinaster Sol. Ann Sci For 38: 55–70CrossRefGoogle Scholar
  31. Rancillac M (1982) Multiplication végétative in vitro et synthèse mycorrhizienne: Pin maritime — Hébélome, Pisolithe. In: INRA (ed) Les mycorhizes: biologie et utilisation. INRA Publ 13: 351–357Google Scholar
  32. Rancillac M (1983) La mycorhization in vitro: influence de la morphologie et des structures anatomiques de l’appareil racinaire sur l’établissement des ectomycorhizes. Bull Soc Bot Fr 130: 47–52Google Scholar
  33. Rancillac M, Faye M, David A (1982) In vitro rooting of cloned shoots in Pinus pinaster. Physiol Plant 56: 97–101CrossRefGoogle Scholar
  34. Slankis V (1950) Effect of a-naphthalene acetic acid on dichotomous branching of isolated roots of Pinus silvestris. Physiol Plant 3: 40–44CrossRefGoogle Scholar
  35. Slankis V (1973) Hormonal relationships in mycorrhizal development. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae, their ecology and physiology. Academic Press, New York London, pp 231–298Google Scholar
  36. Sommer HE, Brown CL, Kormanik PP (1975) Differentiation of plantlets in longleaf pine (Pinuspalustris Mill.) tissue cultured in vitro. Bot Gaz 136: 196–200CrossRefGoogle Scholar
  37. Teulieres C, Alibert G, Baudet A, Marien J (1986) Isolement de protoplastes d’eucalyptus. In: AFOCEL (ed) Ann Rech Sylv 1985: 89–104Google Scholar
  38. Teulieres C, Ferrand D, Boudet A (1989) Obtention de suspensions cellulaires d’Eucalyptus gunnii: survie des cellules et de leurs protoplastes à basse température. In: AFOCEL (ed) Ann Rech Sylv 1988: 117–131Google Scholar
  39. Tranvan H, David A (1985) Greffage in vitro du pin maritime (Pinus pinaster). Can J Bot 63: 1017–1020CrossRefGoogle Scholar
  40. Wilcox H (1968) Morphological studies of the roots of red pine, Pinus resinosa. II. Fungal colonization of roots and the development of mycorrhizae. Am J Bot 55: 688CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Rancillac
    • 1
  1. 1.Station de Physiopathologie VégétaleINRADijon CedexFrance

Personalised recommendations