Skip to main content
  • 49 Accesses

Abstract

Consider a telegraphy alphabet containing a finite number of characters. An example is the teletype alphabet having 32 characters. It is usual to represent them by sets of 5 coefficients with value +1 or −1:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References ordered by Sections

  1. LERNER, R.M., Representation of signals; design of signals; in Lectures on Communication System Theory, New York: McGraw-Hill 1961.

    Google Scholar 

  2. LUKE, H.D., Binäreorthogonale Signalalphabete mit speziellen Korrelationseigenschaften, Archiv elek.Ubertragung 20 (1966), 310–316.

    MathSciNet  Google Scholar 

  3. AKIYAMA, M., Orthogonal PCM transmission with weighted bit length, J. of the Institute of Electrical Communications Engineers of Japan 49 (1966), 1153–1159.

    Google Scholar 

  4. SCHMID, P.E., H.S. DUDLEY and S.E.SKINNER, Partial response signal formats for parallel data transmission,1968 IEEE Int.Conf.on Communications, Record pp.811–816.

    Google Scholar 

  5. CHANG, R.W. and R.A. GIBBY, A theoretical study of performance of an orthogonal multiplexing data transmission scheme, 1968 IEEE Int.Conf.on Communications, Record pp.

    Google Scholar 

  6. LANGE, F.H., Signale und Systeme 1, Braunschweig: Vie-weg 1966.

    MATH  Google Scholar 

  7. WHITTAKER, J.M., Interpolatory function theory, Cambridge Tracts in Mathematics and Mathematical Physics 33, London: Combridge University Press 1935.

    Google Scholar 

  8. LEVINSON, N., Gap and density theorems, Amer.Math.Soc. Coll.Publ. 26(1940).

    Google Scholar 

  9. SHANNON, C.E. Communication in the presence of noise, Proc.IRE 37(19493,10–21.

    Google Scholar 

  10. GOLDIANN, S., Information.theory, Englewood Cliffs NJ: Prentice Hall 1953.

    Google Scholar 

  11. LINDEN, D.A., A discussionof sampling theorems, Proc. IRE 47(1959)11219–1226.

    Google Scholar 

  12. KOHLENBERG, A., Exact interpolation of band-limited functions J.A#plied Physics 24(1953)0432–1436.

    Google Scholar 

  13. Trull-AWL, I., Sampling theorem in abstract harmonic analysis MathematickofyzkâlnyCasopis, Sloven.Akad.Vied 15 (1965): 43–48.

    Google Scholar 

  14. LANGE, F.H., Korrelationselektronik, Berlin: Verlag Technik 1959.

    Google Scholar 

  15. BURR-BROWN Research Corp., Handbookof operational am-plifier applications Tucson, Arizona: 1963.

    Google Scholar 

  16. PHILBRICK RESE.ARCiES,Inc., Applications manual for com-puting amplifiers, Dedham, Mass.: 1966.

    Google Scholar 

  17. JOHNSON, C.K., Analog computer techniques, New York: McGraw-Hill 1963.

    Google Scholar 

  18. KORN, G.A. and T.M.KORN, Electronic analog and hybrid computers, New York: McGraw-Hill 1964.

    MATH  Google Scholar 

  19. SCHMID, P. D.NOWAK and H.HARMUTH, Detectionof ortho-gonal sine and’cosine pulsesbylinear active RC networks, Proc. 1967 Int.Teldmetering Conf.,Washington DC,210–220.

    Google Scholar 

  20. SWICK, D.A., Walsh-function generation, letter to the editor, IEEE Transactions on Information Theory, in print.

    Google Scholar 

  21. BALLARD, A.H., Orthogonal multiplexing, Space and Aero-nautics, Technical Reference Series “Aerospace Electro-nics Advanced Communications” 3(1962),Nov., 51–60.

    Google Scholar 

  22. SINDERS, R.W., The digilock orthogonal modulation sys-tem, Advances in Communication Systems 1 (1965), 57–75.

    Google Scholar 

  23. KUHN, B.G., K.H.MOREY and W.B.SMITH, The orthomatch data transmission system, IEEE Transaction.s on Space Elec-tronics and Telemetry SET-9(1963),63–66.

    Google Scholar 

  24. VITERBI, A.J., Oncodedphase-coherent communications, IRE Transactions on Space Electronics and Telemetry SET-7 (1961), 3–14.

    Google Scholar 

  25. MOSIER, R.R. and R.G.CLABAUGH, Kineplex, a bandwidth-efficient binary transmission system, Transactions AIEE, Communication and Electronics 76 (1957), 723–727.

    Google Scholar 

  26. JAFFE, R.M., Digilock telemetry system for the Air Force special weapons center’s Blue Scout Jr., IRE Trans-actions on Space Electronics and Telemetry SET-8(1962), 44–50.

    Google Scholar 

  27. SANDERS, R.W., Communication efficiency comparison of several communication systems, Proc.IRE 48 (1960), 575–588.

    Article  Google Scholar 

  28. DOELZ, M.L., E.T.HEALD and D.L.MARTIN, Binary data transmission techniques for linear systems, Proc. IRE 45 (1957), 656–661.

    Article  Google Scholar 

  29. WIER, J.M., Digital data communication techniques, Proc.IRE 49 (1961), 196–209.

    Article  Google Scholar 

  30. FILIPOWSKY, R.F. and E.I.MUEHLDORF, Space communica- tions systems;Space communications techniques; Englewood Cliffs NJ: Prentice Hall 1965.

    Google Scholar 

  31. KATSUMARU, K., T.H.YASHI, Y.TAKADA and K.OGAWA, Super multichannel carrier telegraph system by phase modulation (Rectiplex system), Fujitsu Scientific and Technical J. 1 (1965), 261–279.

    Google Scholar 

  32. HARMUTH, H., On thetransmission of information by orthogonal time functions, Transactions AIES; Communication and Electronics 79 (1960), 248–255.

    Google Scholar 

  33. Radio communication with orthogonal time functions, Transactions AIRE, Communication and Electronics 79 (1960), 221–228.

    Google Scholar 

  34. SCHMID, P., H.S.DUDLEY and S.E.SKINNER, Partial response signal formats for parallel data transmission, IEEE Transactions on Communication Technology 1969, in print.

    Google Scholar 

  35. 0SC - A bandwidth-efficient frequency multiplex system for non-equalized voice channels, Allen-Bradley Co., Internal Report (1968).

    Google Scholar 

  36. SATAKE, T. and K.KIRISAWA, An orthogonal pulse code modulation system, Electronics and Communications in Ja- pan 50(1967),35–43. Translated by Scripta Electronica Inc.

    Google Scholar 

  37. WAGNER, K.W., Elektromagnetische Wellen, Bale: Birk-’ häuser 1953.

    Google Scholar 

  38. SMIRNOW, W.I.,Lehrgang der höheren Mathematik, Teil II, Berlin: Deutscher Verlag der Wissenschaften 1961.

    Google Scholar 

  39. MEACHAM, L.A., Negative impedance boosting for 2-wire bilateral signal transmission, 1968 IEEE Int.Conf.on Communications, Record pp.165–168; also Bell System Tech.J. 47 (1968), 1019–1041.

    Google Scholar 

  40. RATHBUN, D.K. and H.J.JENSEN, Nuclear test instrumentation with miniature superconductive cables, IEEE Spectrum 5 (1968), 91–99.

    Article  Google Scholar 

  41. ALLEN, R.J. and N.S.NAHMANN, Analysis and performance of superconductive coaxial transmission lines, Proc.IEEE 52 (1964), 1147–1154.

    Article  Google Scholar 

  42. SANDY, G.F., Square wave (Rademacher-Walsh functions) analysis,Mitre Corporation, Working Paper WP-1585(1968).

    Google Scholar 

  43. SIEBERT, W.M., Signals in linear time invariant systems, in Lectures on Communication System Theory, New York: McGraw-Hill 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harmuth, H.F. (1969). Direct Transmission of Signals. In: Transmission of Information by Orthogonal Functions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13227-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13227-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13229-6

  • Online ISBN: 978-3-662-13227-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics