Thinking in Complexity pp 171-252 | Cite as
Complex Systems and the Evolution of Artificial Intelligence
- 160 Downloads
Abstract
Can machines think? This famous question from Turing has new topicality in the framework of complex systems. The chapter starts with a short history of computer science since Leibniz and his program for mechanizing thinking (mathesis universalis) (Sect. 5.1). The modern theory of computability enables us to distinguish complexity classes of problems, meaning the order of corresponding functions describing the computational time of their algorithms or computational programs. Modern computer science is interested not only in the complexity of universal problem solving but also in the complexity of knowledge-based programs. Famous examples are expert systems simulating the problem solving behavior of human experts in their specialized fields. Further on, we ask if a higher efficiency of problem solving may be expected from quantum computers and quantum complexity theory (Sect. 5.2).
Keywords
Expert System Cellular Automaton Turing Machine Computer Virus Certainty FactorPreview
Unable to display preview. Download preview PDF.
References
- 5.1For this chapter compare Mainzer, K.: Computer - Neue Flügel des Geistes? De Gruyter: Berlin/New York (1993).Google Scholar
- Mainzer, K.: Die Evolution intelligenter Systeme. Zeitschrift für Semiotik 12 (1990) 81–104Google Scholar
- 5.2Feigenbaum, E.A., McCorduck, P.: The Fifth Generation. Artificial Intelligence and Japan’s Computer Challenge to the World. Michael Joseph: London (1984)Google Scholar
- 5.3Cf. Williams, M.R.: A History of Computing Technology. Prentice-Hall: Engle- wood Cliffs (1985)Google Scholar
- 5.4Cohors-Fresenborg, E.: Mathematik mit Kalkülen und Maschinen. Vieweg: Braunschweig (1977) 7zbMATHCrossRefGoogle Scholar
- 5.Herrn von Leibniz’ Rechnung mit Null und Eins. Siemens AG: Berlin (1966).Google Scholar
- Mackensen, L. von: Leibniz als Ahnherr der Kybernetik–ein bisher unbekannter Leibnizscher Vorschlag einer “Machina arithmetica dyadicae”. In: Akten des II. Internationalen Leibniz-Kongresses 1972 Bd. 2. Steiner: Wiesbaden (1974) 255–268Google Scholar
- 5.6Scholz, H.: Mathesis Universalis. Schwabe: Basel (1961)zbMATHGoogle Scholar
- 5.7Babbage, C.: Passages from the Life of a Philosopher. Longman and Co.: London (1864).Google Scholar
- Bromley, A.G.: Charles Babbage’s Analytical Engine 1838. Annals of the History of Computing 4 (1982) 196–219MathSciNetzbMATHCrossRefGoogle Scholar
- 5.8Cf. Minsky, M.: Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines. Annals of Math. 74, 437–454.Google Scholar
- Sheperdson, J.C., Sturgis, H.E.: Computability of recursive functions. J. Assoc. Comp. Mach. 10 (1963) 217–255.CrossRefGoogle Scholar
- Sheperdson, J.C., Sturgis, H.E.: For the following description of register machines compare Rödding, D.: Klassen rekursiver Funktionen. In: Löb, M.H. (ed.): Proceedings of the Summer School in Logic. Springer: Berlin (1968) 159–222.Google Scholar
- CohorsFresenborg, E.: Mathematik mit Kalkülen und Maschinen (see Note 4)Google Scholar
- 5.9Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. London Math. Soc., Ser. 242 (1936) 230–265.Google Scholar
- Post, E.L.: Finite combinatory processes — Formulation I. Symbolic Logic I (1936) 103–105.Google Scholar
- Davis, M.: Computability and Unsolvability. McGraw-Hill: New York (1958) 3zbMATHGoogle Scholar
- 5.10Arbib, M.A.: Brains, Machines, and Mathematics. Springer: New York (1987) 131zbMATHCrossRefGoogle Scholar
- 5.11Mainzer, K.: Der Konstruktionsbegriff in der Mathematik. Philosophia Naturalis 12 (1970) 367–412MathSciNetGoogle Scholar
- 5.12Cf. Knuth, D.M.: The Art of Computer Programming. Vol. 2. Addison-Wesley: Reading, MA (1981).Google Scholar
- Börger, E.: Berechenbarkeit, Komplexität, Logik. Vieweg: Braunschweig (1985)zbMATHGoogle Scholar
- 5.13Grötschel, M., Lovâsc, L., Schryver, A.: Geometric Algorithms and Combinatorial Optimization. Springer: Berlin (1988)zbMATHCrossRefGoogle Scholar
- 5.14Gardner, A.: Penrose Tiles to Trapdoor Ciphers. W.H. Freeman: New York (1989)Google Scholar
- 5.15Cf. Arbib, M.A.: Speed-up theorems and incompleteness theorem. In: Caianiello, E.R. (ed.): Automata Theory. Academic Press (1966) 6–24.Google Scholar
- Mostowski, A.: Sentences Undecidable in Formalized Arithmetic. North-Holland: Amsterdam (1957).Google Scholar
- Beth, E.W.: The Foundations of Mathematics, North-Holland: Amsterdam (1959).zbMATHGoogle Scholar
- Kleene, S.C.: Introduction to Metamathematics. North-Holland: Amsterdam (1967)Google Scholar
- 5.16Mainzer, K.: Rationale Heuristik und Problem Solving. In: Burrichter, C., Inhetveen, R., Kötter, R. (eds.): Technische Rationalität und rationale Heuristik. Schöningh: Paderborn (1986) 83–97Google Scholar
- 5.17Mainzer, K.: Knowledge-based systems. Remarks on the philosophy of technology and Artificial Intelligence. Journal for General Philosophy of Science 21 (1990) 47–74Google Scholar
- 5.18Bibel, W., Siekmann, J.: Künstliche Intelligenz. Springer: Berlin (1982).CrossRefGoogle Scholar
- Nilson, N.J.: Principles of Artificial Intelligence. Springer: Berlin (1982).Google Scholar
- Kredel, L.: Künstliche Intelligenz und Expertensysteme. Droemer Knaur: München (1988)Google Scholar
- 5.19Puppe, F.: Expertensysteme. Informatik-Spektrum 9 (1986) 1–13MathSciNetGoogle Scholar
- 5.20For instance, one of the constructors of DENDRAL and MYCIN received a Ph.D. in philosophy for his dissertation “Scientific Discoveries”, supervised by Gerald Massey (today Center for Philosophy of Science, Pittsburgh). Also refer to Glymour, C.: AI is philosophy. In: Fetzer, J.H. (ed.): Aspects in Artificial Intelligence. Kluwer Academic Publisher: Boston (1988) 195–207Google Scholar
- 5.21Buchanan, B.G., Sutherland, G.L., Feigenbaum, E.A.: Heuristic DENDRAL: A program for generating processes in organic chemistry. In: Meltzer, B., Michie, D. (eds.): Machine Intelligence 4. Edinburgh (1969).Google Scholar
- Buchanan, B.G., Feigenbaum, E.A.: DENDRAL and META-DENDRAL: Their applications dimension. In: Artificial Intelligence 11 (1978) 5–24Google Scholar
- 5.22McCarthy, J.: LISP Programmer’s Manual (Rep. MIT Press ). Cambridge, MA (1962).Google Scholar
- Stoyan, H., Goerz, G.: LISP — Eine Einführung in die Programmierung. Springer: Berlin (1984)zbMATHGoogle Scholar
- 5.23Randall, D., Buchanan, B.G., Shortlife, E.H.: Production rules as a representation for a knowledge-based consultation program. Artificial Intelligence 8 (1977).Google Scholar
- Shortliffe, E.H.: MYCIN: A rule-based computer program for advising physicians regarding antimicrobial therapy selection. AI Laboratory, Memo 251, STANCS-74–465, Stanford University.Google Scholar
- Winston, P.H.: Artificial Intelligence. Addison-Wesley: Reading, MA (1977) Chap. 9Google Scholar
- 5.24Doyle, J.: A truth maintenance system. Artificial Intelligence 12 (1979) 231–272MathSciNetCrossRefGoogle Scholar
- 5.25Lenat, D.B., Harris, G.: Designing a rule system that searches for scientific discoveries. In: Waterman, D.A., Hayes-Roth, F. (eds.): Pattern Directed Inference Systems. New York (1978) 26.Google Scholar
- Lenat, D.B.: AM: Discovery in mathematics as heuristic search. In: Davis, R., Lenat, D.B. (eds.): Knowledge-Based Systems in Artificial Intelligence. New York (1982) 1–225Google Scholar
- 5.26Langley, P.: Data-driven discovery on physical laws. Cognitive Science 5 (1981) 31–54CrossRefGoogle Scholar
- 5.27Langley, P., Simon, H.A., Bradshaw, G.L., Zytkow, J.M.: Scientific Discovery: Computational Explorations of the Creative Processes. Cambridge, MA (1987)Google Scholar
- 5.28Kulkarni, D., Simon, H.A.: The process of scientific discovery: The strategy of experimentation. Cognitive Science 12 (1988) 139–175CrossRefGoogle Scholar
- 5.Cf. Winston, P.H.: Artificial Intelligence (see Note 23)Google Scholar
- 5.30Audretsch, J., Mainzer, K. (eds.): Wieviele Leben hat Schrödingers Katze? B.I. Wissenschaftsverlag: Mannheim (1990) 273 (Fig. 5.14a), 274 (Fig. 5.14.b), 276 (Fig. 5. 14c )Google Scholar
- 5.31Penrose, R.: Newton, quantum theory and reality. In: Hawking, S.W., Israel, W: 300 Years of Gravity. Cambridge University Press: Cambridge (1987)Google Scholar
- 5.32Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. A400 (1985) 97–117MathSciNetADSzbMATHCrossRefGoogle Scholar
- 5.33For this chapter compare Mainzer, K.: Computer — Neue Flügel des Geistes? De Gruyter: Berlin (1993).Google Scholar
- Mainzer, K.: Philosophical concepts of computational neuroscience. In: Eckmiller, R., Hartmann, G., Hauske, G. (eds.): Parallel Processing in Neural Systems and Computers. North-Holland: Amsterdam (1990) 9–12Google Scholar
- 5.McCullock, W.S., Pitts, W: A logical calculus of the ideas immanent in nervous activity. In: Bulletin of Mathematical Biophysics 5 (1943) 115–133.Google Scholar
- Arbib, M.A.: Brains, Machines and Mathematics (see Note 10 ) 18Google Scholar
- 5.35Neumann, J. von: The Computer and the Brain. Yale University Press: New Haven (1958)zbMATHGoogle Scholar
- 5.36Cf. Burks, A.W. (ed.): Essays on Cellular Automata. University of Illinois Press (1970).Google Scholar
- Myhill, J.: The abstract theory of self-reproduction. In: Mesarovic, M.D. (ed.): Views on General Systems Theory. John Wiley (1964) 106–118Google Scholar
- 5.37Wolfram, S.: Universality and complexity in cellular automata. In: Farmer, D., Toffoli, T., Wolfram, S. (eds.): Cellular Automata. Proceedings of an Interdisciplinary Workshop. North-Holland: Amsterdam (1984) 1–35.Google Scholar
- Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific: Singapore (1986).zbMATHGoogle Scholar
- Demongeot, J., Golés, E., Tchuente, M. (eds.): Dynamical Systems and Cellular Automata. Academic Press: London (1985).Google Scholar
- Poundstone, W: The Recursive Universe. Cosmic Complexity and the Limits of Scientific Knowledge. Oxford University Press: Oxford (1985)Google Scholar
- 5.38Rosenblatt, E: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65 (1958) 386–408MathSciNetCrossRefGoogle Scholar
- 5.39Minsky, M., Papert, S.A.: Perceptrons. MIT Press: Cambridge MA (1969) (expanded edition 1988 )Google Scholar
- 5.40Gorman, R.P., Sejnowski, T.J.: Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks 1 (1988) 75–89.CrossRefGoogle Scholar
- Churchland, P.M.: A Neurocomputational Perspective. The Nature of Mind and the Structure of Science. MIT Press: Cambridge MA (1989)Google Scholar
- 5.41Sejnowski, T.J., Rosenberg, C.R.: NETtalk: A parallel network that learns to read aloud. The Johns Hopkins University Electrical Engineering and Computer Science Technical Report IHU/EECS-86/01 (1986) 32.Google Scholar
- Cf. Kinzel, W/Deker, U.: Der ganz andere Computer: Denken nach Menschenart. Bild der Wissenschaft 1 (1988) 43Google Scholar
- 5.42Schöneburg, E., Hansen, N., Gawelczyk: Neuronale Netzwerke. Markt and Technik: München (1990) 176, 177Google Scholar
- 5.43Rumelhart, D.E., Smolensky, P., McClelland, J.L., Hinton, G.E.: Schemata and sequential thought processes. In: McClelland, J.L., Rumelhart, D.E. (eds.): Parallel Distributed Processing: Explorations in the Microstructure of Cognition vol. 2: Applications. MIT Press: Cambridge MA (1986).Google Scholar
- Churchland, P.S.: Neurophilosophy. Toward a Unified Science of the Mind-Brain. MIT Press: Cambridge MA (1988) 465Google Scholar
- 5.44Haken, H. (ed.): Neural and Synergetic Computers. Springer: Berlin (1988) 5–7zbMATHGoogle Scholar
- 5.45Haken, H.: Synergetics as a tool for the conceptualization and mathematization of cognition and behaviour — How far can we go? In: Haken, H., Stadler, M. (eds.): Synergetics of Cognition. Springer: Berlin (1990) 23–24CrossRefGoogle Scholar
- 5.46For chapter 5.4 compare Mainzer, K.: Philosophical foundations of neurobionics. In: Bothe, H.W., Samii, M., Eckmiller, R. (eds.): Neurobionics. An Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System. North-Holland: Amsterdam (1993) 31–47Google Scholar
- 5.47Cf. Samii, M. (ed.): Peripheral Nerve Lesions. Springer: Berlin (1990)Google Scholar
- 5.48Eckmiller, R. (ed.): Neurotechnologie-Report. Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie: Bonn (1995).Google Scholar
- Stein, R.B., Peckham, P.H. (eds.): Neuroprostheses: Replacing Motor Function After Disease or Disability. Oxford University Press: New York (1991)Google Scholar
- 5.49Cosman, E.R.: Computer-assisted technologies for neurosurgical procedures. In: Bothe, H.W., Samii, M., Eckmiller, R. (eds.): Neurobionics (see Note 46 ) 365Google Scholar
- 5.50Foley, J.D., Dam, A. van: Fundamentals of Interactive Computer Graphics. Addison-Wesley: Amsterdam (1982).Google Scholar
- Foley, J.D.: Neuartige Schnittstellen zwischen Mensch und Computer. Spektrum des Wissenschaft 12 (1987)Google Scholar
- 5.51Gibson, W.: Neuromancer. Grafton: London (1986) 67Google Scholar
- 5.52Putnam, H.: Reason, Truth and History. Cambridge University Press: Cambridge (1981) 6CrossRefGoogle Scholar
- 5.53Langton, C.G. (ed.): Artificial Life, Addison Wesley: Redwood City (1989)Google Scholar
- 5.54Lindenmayer, A., Rozenberg, G. (eds.): Automata, Languages, Development. North-Holland: Amsterdam (1976).Google Scholar
- Lindenmayer, A.: Models for multicellular development: Characterization, inference and complexity of L-systems. In: Kelemenovâ, A., Kelemen, J. (eds.): Trends, Techniques and Problems in Theoretical Computer Science, Springer: Berlin (1987) 138–168CrossRefGoogle Scholar
- 5.55Langton, C.G.: Self-reproduction in cellular automata. Physica D 10 (1984) 135–144.ADSCrossRefGoogle Scholar
- Artificial Life, in: Langton [5.53] Plates 1–8Google Scholar
- 5.56Langton, C.G.: Life at the edge of chaos. In: Langton, C.G., Taylor, C., Farmer, J. D., Rasmussen, S. (eds.): Artificial Life II, Addison-Wesley: Redwood City (1992) 41–91Google Scholar
- 5.57Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzi- pien der biologischen Evolution, Frommann-Holzboog: Stuttgart (1973)Google Scholar
- 5.58Holland, J.H.: Adaption in Natural and Artificial Systems. The MIT Press: Cambridge, MA (1992, 1st ed. 1975 )Google Scholar
- 5.59Mitchell, M., Forrest, S.: Genetic Algorithms and Artificial Life. Artificial Life 1 (1994) 267–289CrossRefGoogle Scholar
- 5.60Forrest, S., Javornik, B., Smith, R., Perelson, A.: Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation 1 (1993) 191–211CrossRefGoogle Scholar
- 5.61Highland, H.J. (ed.): Computer Virus Handbook. Elsevier Advanced Technology: Oxford (1990).Google Scholar
- Spafford, E.H.: Computer viruses as artificial life. Artificial Life 1 (1994) 249–265CrossRefGoogle Scholar
- 5.62Taylor, C., Jefferson, D.: Artificial life as a tool for biology inquiry. Artificial Life 1 (1994) 1–13CrossRefGoogle Scholar
- 5.63Moran, F., Moreno, A., Merelo, J.J., Chacön, P. (eds.): Advances in Artificial Life, Springer: Berlin (1995)zbMATHGoogle Scholar
- 5.Mainzer, K.: Gehirn.Google Scholar
- Computer, Komplexität. Springer: Berlin 1997Google Scholar