Skip to main content

Complex Systems and the Evolution of Life

  • Chapter

Abstract

How can one explain the emergence of order in the Darwinian evolution of life? In the history of philosophy and biology, life was explained teleologically by non-causal (“vital”) forces aiming at some goals in nature. In a famous quotation Kant said that the “Newton for explaining a blade of grass” could never be found (Sect. 3.1). Boltzmann could show that living organisms are open dissipative systems which do not violate the second law of thermodynamics: Maxwell’s demons are not necessary to explain the arising order of life in spite of the increasing entropy and disorder in closed systems according to the second law. Nevertheless, in the statistical interpretation from Boltzmann to Monod the emergence of life is only a contingent event, a local cosmic fluctuation at the boundary of the universe (Sect. 3.2). In the framework of complex systems the emergence of life is not contingent, but necessary and lawful in the sense of dissipative self-organization. The growth of organisms and species is modeled as the emergence of macroscopic patterns caused by nonlinear (microscopic) interactions of molecules, cells, etc., in phase transitions far from thermal equilibrium (Sect. 3.3). Even ecological populations are understood as complex dissipative systems of plants and animals with mutual nonlinear interactions and metabolism with their environment (Sect. 3.4). Spencer’s idea that life is determined by a structural evolution with increasing complexity seems to be mathematized by complex dynamical systems. Is the “Newton of life” found? The theory of complex dynamical systems does not explain what life is, but it can model how forms of life can arise under certain conditions. Thus, the existence of our life is still a wonder for us as well as for our ancestors, even if we shall eventually model the complex dynamics of life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For historical sources of Sect. 3.1 compare Mainzer, K.: Die Philosophen und das Leben. In: Fischer, E.P., Mainzer, K. (eds.): Die Frage nach dem Leben. Piper: München (1990) 11–44

    Google Scholar 

  2. Diels-Kranz (see Note 2, Chapter 2) 12 A 30

    Google Scholar 

  3. Aristotle: Historia animalium 588 b 4

    Google Scholar 

  4. Aristotle: De generatione animalium II 736 b 12–15. a 35-b2

    Google Scholar 

  5. Descartes, R.: Discours de la méthode. Leipzig (1919/20) 39

    Google Scholar 

  6. Borelli, G.A.: De motu animalium. Leipzig (1927) 1

    Google Scholar 

  7. Leibniz, G.W.: Monadology §64

    Google Scholar 

  8. Bonnet, C.: Contemplation de la nature (1764). Oeuvres VII, 45

    Google Scholar 

  9. Kant, I.: Kritik der Urteilskraft. Ed. G. Lehmann, Reclam: Stuttgart (1971) 340

    Google Scholar 

  10. Goethe, J.W.: Dichtung und Wahrheit. In: Werke ( Hamburger Ausgabe) Bd. IX 490

    Google Scholar 

  11. Schelling, F.W.J.: Sämtliche Werke Bd.II (ed. Schröter, M. ), München (1927) 206

    Google Scholar 

  12. Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London (1859)

    Google Scholar 

  13. Darwin, C.: The Descent of Man, and Selection in Relation to Sex. London (1871)

    Google Scholar 

  14. Spencer, H.: Structure, Function and Evolution (ed. Andrenski, S. ), London (1971)

    Google Scholar 

  15. Darwin, C.: For a modern evaluation of Darwin’s position compare Richards, R.: The Meaning of Evolution. University of Chicago Press: Chicago (1992)

    Google Scholar 

  16. Boltzmann, L.: Der zweite Hauptsatz der mechanischen Wärmetheorie. In: Boltzmann, L. (ed.): Populäre Schriften. Leipzig (1905) 24–46

    Google Scholar 

  17. Cf. Schneider, I.: Rudolph Clausius’ Beitrag zur Einführung wahrscheinlichkeitstheoretischer Methoden in die Physik der Gase nach 1856. Archive for the History of Exact Sciences 14 (1974/75) 237–261

    Google Scholar 

  18. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes (see Note 43, Chapter 2)

    Google Scholar 

  19. Cf. Boltzmann, L.: Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie (1866). In: Boltzmann, L.: Wissenschaftliche Abhandlungen (ed. Hasenöhrl, F.) vol. 1 Leipzig (1909), repr. New York (1968) 9–33.

    Google Scholar 

  20. Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärmetheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft (1871) 288–308

    Google Scholar 

  21. Cf., e.g., Einstein’s famous article `Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen’. Annalen der Physik 17 (1905) 549–560

    Google Scholar 

  22. Poincaré, H.: Sur les tentatives d’explication méchanique des principes de la thermodynamique. Comptes rendus de l’Académie des Sciences 108 (1889) 550–553.

    MATH  Google Scholar 

  23. Zermelo, E.: Über einen Satz der Dynamik und die mechanische Wärmetheorie. Annalen der Physik 57 (1896) 485

    Article  ADS  Google Scholar 

  24. Cf. Popper, K.R.: Irreversible processes in physical theory. Nature 181 (1958) 402–403

    Article  ADS  Google Scholar 

  25. Reichenbach, H.: The Direction of Time. Berkeley (1956)

    Google Scholar 

  26. Grünbaum, A.: Philosophical Problems of Space and Time. Dordrecht (1973)

    Google Scholar 

  27. Hintikka, J., Gruender, D., Agazzi, E. (eds.): Probabilistic Thinking, Thermodynamics and the Interaction of the History and Philosophy of Science II. Dordrecht/Boston/ London (1978)

    Google Scholar 

  28. Boltzmann, L.: Der zweite Hauptsatz der mechanischen Wärmetheorie. In: Boltzmann, L.: Populäre Schriften (see Note 13 ) 26–46

    Google Scholar 

  29. Boltzmann, L.: Über die Frage nach der objektiven Existenz der Vorgänge in der unbelebten Natur. In: Boltzmann, L.: Populäre Schriften (see Note 13 ) 94–119

    Google Scholar 

  30. Monod, J.: Le Hasard et la Nécessité. Editions du Seuil: Paris (1970)

    Google Scholar 

  31. Primas, H.: Kann Chemie auf Physik reduziert werden? Chemie in unserer Zeit 19 (1985) 109–119, 160–166

    Article  Google Scholar 

  32. Bergson, H.L.: L’évolution créative. Paris (1907).

    Google Scholar 

  33. Heitler, W.H.: Über die Komplementarität von lebloser und lebender Materie. Abhandlungen der Math.-Naturw. Klasse d. Ak. d. Wiss. u. Lit. Mainz Nr. 1 (1976) 3–21

    Google Scholar 

  34. Driesch, A.: Philosophie des Organischen. Leipzig (1909).

    Google Scholar 

  35. Whitehead, A.N.: Process and Reality. An Essay in Cosmology. New York (1978)

    Google Scholar 

  36. Schrödinger, E.: Was ist Leben? Piper: München (1987) 133

    Google Scholar 

  37. Schrödinger, E.: Was ist Leben? (see Note 25) 147

    Google Scholar 

  38. Thompson, W: The Sorting Demon of Maxwell (1879). In: Thompson, W: Physical Papers I-VI, Cambridge (1882–1911), V, 21–23

    Google Scholar 

  39. Prigogine, I.: Time, irreversibility and structure. In: Mehra, J. (ed.): The Physicist’s

    Google Scholar 

  40. Conception of Nature. D. Reidel: Dordrecht/Boston (1973) 589

    Google Scholar 

  41. Eigen, M.: The origin of biological information. In: Mehra, J. (ed.): The Physi- cist’s Conception of Nature (see Note 28 ) 607.

    Google Scholar 

  42. Fig. 3.2 shows a so-called coat gene obtained by nuclease digestion of phage MS2-RNA (Min Jou, W., Haegemann, G., Ysebaert, M., Fiers, W: Nature 237 (1972) 82). This gene codes for a sequence of 129 amino acids. The structure is further spatially folded. Also compare Perel- son, A.S., Kauffman, S.A. (eds.): Molecular Evolution on Ragged Landscapes: Proteins, RNA, and the Immune System. Santa Fé Institute Studies in the Sci- ences of Complexity, Proceedings vol. 9. Addison-Wesley: Redwood City (1990)

    Google Scholar 

  43. For a survey cf. Depew, D.J., Weber, B.H.: Evolution at a Crossroads. The New Biology and the New Philosophy of Science. MIT Press: Cambridge, MA (1985)

    Google Scholar 

  44. Ebeling, W., Feistel, R.: Physik der Selbstorganisation und Evolution. Akademie-Verlag: Berlin (1982)

    Google Scholar 

  45. Haken, H., Haken-Krell, M.: Entstehung von biologischer Information und Ordnung. Wissenschaftliche Buchgesellschaft: Darmstadt (1989).

    Google Scholar 

  46. Hofbauer, L.: Evolutionstheorie und dynamische Systeme. Mathematische Aspekte der Selektion. Springer: Berlin (1984)

    MATH  Google Scholar 

  47. Eigen, M.: Homunculus im Zeitalter der Biotechnologie — Physikochemische Grundlagen der Lebensvorgänge. In: Gross, R. (ed.): Geistige Grundlagen der Medizin. Springer: Berlin (1985) 26, 36 for Fig. 3.4a—d.

    Google Scholar 

  48. Maynard Smith, J.: Optimization theory in evolution. Annual Review of Ecological Systems 9 (1978) 31–56

    Article  Google Scholar 

  49. Mainzer, K.: Metaphysics of nature and mathematics in the philosophy of Leibniz. In: Rescher, N. (ed.): Leibnizian Inquiries. University Press of America: Lanham/New York/London (1989) 105–130

    Google Scholar 

  50. Dyson, F.: Origins of Life. Cambridge University Press: Cambridge (1985)

    Google Scholar 

  51. Kauffman, S.: Autocatalytic sets of proteins. Journal of Theoretical Biology 119 (1986) 1–24

    Article  Google Scholar 

  52. For a survey cf. Kauffmann, A.S.: Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press: Oxford (1992)

    Google Scholar 

  53. Haken, H.: Synergetics (see Note 4, Chapter 1 ) 310

    Google Scholar 

  54. Hess, B., Mikhailov, A.: Self-organization in living cells. In: Science 264 (1994) 223–224

    Google Scholar 

  55. Hess, B., Mikhailov, A.: Ber. Bunsenges. Phys. Chem. 98 (1994) 1198–1201 (extended version)

    Google Scholar 

  56. Susman, M.: Growth and Development. Prentice-Hall: Englewood Cliffs, NJ (1964)

    Google Scholar 

  57. Prigogine, I.: Order through fluctuation. In: Jantsch, E., Waddington, C.H. (eds.): Evolution and Consciousness. Human Systems in Transition. Addison-Wesley: London (1976) 108

    Google Scholar 

  58. Gerisch, G., Hess, B.: Cyclic-AMP-controlled oscillations in suspended dictyostelium cells: Their relation to morphogenetic cell interactions. Proc. Natl. Acad. Sci. 71 (1974) 2118

    Google Scholar 

  59. Rosen, R.: Dynamical System Theory in Biology. Wiley-Interscience: New York (1970)

    MATH  Google Scholar 

  60. Abraham, R.H., Shaw, C.D.: Dynamics — The Geometry of Bahavior (see Note 14, Chapter 2) 110 for Figs. 3. 5

    Google Scholar 

  61. Meinhardt, H., Gierer, A.: Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell. Sci. 15 (1974) 321 (Figs. 3. 7–8 )

    Google Scholar 

  62. Meinhardt, M.: Models of Biological Pattern Formation. Academic Press: London (1982)

    Google Scholar 

  63. For a survey compare Gerok, W. (ed.): Ordnung und Chaos in der belebten und unbelebten Natur. Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte. 115. Versammlung (1988), Stuttgart (1989)

    Google Scholar 

  64. Mainzer, K.: Chaos und Selbstorganisation als medizinische Paradigmen. In: Deppert, W., Kliemt, H., Lohff, B., Schaefer, J. (eds.): Wissenschaftstheorien in der Medizin. De Gruyter: Berlin/New York (1992) 225–258

    Google Scholar 

  65. Bassingthwaighte, J.B., van Beek, J.H.G.M: Lightning and the heart: Fractal behavior in cardiac function. Proceedings of the IEEE 76 (1988) 696

    Article  Google Scholar 

  66. Goldberger, A.L., Bhargava, V., West, B.J.: Nonlinear dynamics of the heartbeat. Physica 17D (1985) 207–214

    MathSciNet  MATH  Google Scholar 

  67. Goldberger, A.L., Bhargava, V., West, B.J.: Nonlinear dynamics in heart failure: Implications of long-wavelength cardiopulmonary oscillations. American Heart Journal 107 (1984) 612–615

    Article  Google Scholar 

  68. Ree Chay, T., Rinzel, J.: Bursting, beating, and chaos in an excitable membrance model. Biophysical Journal 47 (1985) 357–366

    Article  ADS  Google Scholar 

  69. Winfree, A.T.: When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. Princeton (1987)

    Google Scholar 

  70. Guevara, M.R., Glass, L., Schrier, A.: Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science 214 (1981) 1350

    Google Scholar 

  71. Cf. Johnson, L.: The thermodynamic origin of ecosystems: a tale of broken symmetry. In: Weber, B.H., Depew, D.J., Smith, J.D. (eds.): Entropy, Information, and Evolution. New Perspectives on Physical and Biological Evolution. MIT Press. Cambridge, MA (1988) 75–105

    Google Scholar 

  72. Schneider, E.D.: Thermodynamics, ecological succession, and natural selection: a common thread. In: Weber, B.H., Depew, D.J., Smith, J.D. (eds.): Entropy, Information, and Evolution (see Note 42) 107138

    Google Scholar 

  73. Odum, E.P.: The strategy of ecosystem development. Science 164 (1969) 262–270

    Article  ADS  Google Scholar 

  74. Margalef, R.: Perspectives in Ecological Theory. University of Chicago Press: Chicago (1968)

    Google Scholar 

  75. Lovelock, J.E.: The Ages of Gaia. Bantam (1990)

    Google Scholar 

  76. Schneider, S.H., Boston, P.J. (eds.): Scientists on Gaia. MIT Press: Cambridge, MA (1991)

    Google Scholar 

  77. Pimm, S.: The Balance of Nature, University of Chicago Press: Chicago (1991)

    Google Scholar 

  78. Cf. Rosen, R.: Dynamical System Theory in Biology (see Note 37)

    Google Scholar 

  79. Freedmann, H.I.: Deterministic Mathematical Models in Population Ecology. Decker: New York (1980)

    Google Scholar 

  80. Abraham, R.H., Shaw, C.D.: Dynamics — The Geometry of Behavior (see Note 14, Chapter 2 ) 85

    Google Scholar 

  81. Lotka, A.J.: Elements of Mathematical Biology. Dover: New York (1925)

    Google Scholar 

  82. Volterra, V.: Leçons sur la théorie mathématique de la lutte pour la vie. Paris (1931)

    Google Scholar 

  83. Haken, H.: Synergetics (see Note 4, Chapter 1) 130, 308

    Google Scholar 

  84. Rettenmeyer, C.W.: Behavioral studies of army ants. Kansas Univ. Bull. 44 (1963) 281

    Google Scholar 

  85. Prigogine. I.: Order through Fluctuation: Self-Organization and Social System. In: Jantsch, E., Waddington, C.H. (eds.): Evolution and Consciousness (see Note 35 ) 111

    Google Scholar 

  86. Prigogine, I., Allen, P.M.: The challenge of complexity. In: Schieve, W.C., Allen, P.M.: Self-Organization and Dissipative Structures. Applications in the Physical and Social Sciences. University of Texas Press: Austin (1982) 28

    Google Scholar 

  87. Wicken, J.S.: Thermodynamics, evolution, and emergence: Ingredients of a new synthesis. In: Weber, B.H., Depew, D.J., Smith, J.D. (eds.): Entropy, Information, and Evolution (see Note 42 ) 139–169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mainzer, K. (1997). Complex Systems and the Evolution of Life. In: Thinking in Complexity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13214-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13214-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13216-6

  • Online ISBN: 978-3-662-13214-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics