The Family Halobacteriaceae

  • Helge Larsen


Sodium chloride, common salt, is a widely used agent in the protection of food and foodstuff against bacterial growth and spoilage. Some bacteria are, however, quite resistant to salt and are able to develop at very high, even saturating, salt concentrations. Some bacteria even require very high salt concentrations in their environment for growth and development. Bacteria growing best at salt concentrations between 20% (wt/vol) and saturation (about 30% (wt/vol) are often referred to as “extremely halophilic bacteria” or “extreme halophiles”.


Halophilic Bacterium Great Salt Lake Muramic Acid Salt Fish Solar Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baxter, R. M., Gibbons, N. E. 1954. The glycerol dehydrogenases of Pseudomonas salinaria, Vibrio costicolus, and Escherichia coli in relation to bacterial halophilism. Canadian Journal of Biochemistry and Physiology 32:206–217.PubMedCrossRefGoogle Scholar
  2. Breed, R. S., Murray, E. G. D., Smith, N. R. (eds.). 1957. Bergey’s manual of determinative bacteriology, 7th ed. Baltimore: Williams & Wilkins.Google Scholar
  3. Brown, A. D., Cho, K. Y. 1970. The walls of the extremely halophilic cocci: Gram-positive bacteria lacking muramic acid. Journal of General Microbiology 62:267–270.PubMedCrossRefGoogle Scholar
  4. Brown, H. J., Gibbons, N. E. 1955. The effect of magnesium, potassium, and iron on the growth and morphology of red halophilic bacteria. Canadian Journal of Microbiology 1:486–494.PubMedCrossRefGoogle Scholar
  5. Buchanan, R. E., Gibbons, N. E. (eds.). 1974. Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  6. Colwell, R. R., Litchfield, C. D., Vreeland, R. H., Kiefer, L. A., Gibbons, N. E. 1979. Taxonomic studies of red halophilic bacteria. International Journal of Systematic Bacteriology 29:379–399.CrossRefGoogle Scholar
  7. Dundas, I. E. D. 1977. Physiology of Halobacteriaceae, pp. 85–120. In: Rose, A. H., Tempest, D. W. (eds.), Advances in microbial physiology, vol. 15. London, New York, San Francisco: Academic Press.CrossRefGoogle Scholar
  8. Dundas, I. D., Larsen, H. 1962. The physiological role of the carotenoid pigments of Halobacterium salinarium. Archiv für Mikrobiologie 44:233–239.CrossRefGoogle Scholar
  9. Dundas, I. D., Srinivasan, V. R., Halvorson, H. O. 1963. A chemically defined medium for Halobacterium salinarium strain 1. Canadian Journal of Microbiology 9:619–624.CrossRefGoogle Scholar
  10. Dussalt, H. P. 1958. The fate of red halophilic bacteria in solar salt during storage, pp. 13–19. In: Eddy, B. P. (ed.), The microbiology of fish and meat curing brines. Proceedings of the 2nd International Symposium on Food Microbiology. London: H. M. Stationary Office.Google Scholar
  11. Eimhjellen, K. 1965. Isolation of extremely halophilic bacteria. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. I., Suppl. 1:126–138.Google Scholar
  12. Gibbons, N. E. 1937. Studies on salt fish. 1. Bacteria associated with the reddening of salt fish. Journal of the Biological Board of Canada 3:70–76.CrossRefGoogle Scholar
  13. Gibbons, N. E. 1969. Isolation, growth and requirements of halophilic bacteria, pp. 169–183. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 3B. London, New York: Academic Press.Google Scholar
  14. Ginzburg, M., Sachs, L., Ginzburg, B. Z. 1970. Ion metabolism in a halobacterium. I. Influence of age of culture on intracellular concentrations. Journal of General Physiology 55:187–207.PubMedCrossRefGoogle Scholar
  15. Harrison, F. C, Kennedy, M. E. 1922. The red discolouration of cured codfish. Transactions of the Royal Society of Canada, Sect. V 16:101–152.Google Scholar
  16. Imhoff, J. F., Trüper, H. G. 1977. Ectothiorhodospira halo-chloris sp. no v., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyllb. Archives of Microbiology 114:115–121.CrossRefGoogle Scholar
  17. Imhoff, J. F, Sahl, H. G., Soliman, G. S. H., Trüper, H. G. 1978. The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology Journal 1:183–195.Google Scholar
  18. Kaplan, I. R., Friedmann, A. 1970. Biological productivity in the Dead Sea. Part I. Microorganisms in the water column. Israel Journal of Chemistry 8:513–528.Google Scholar
  19. Kirk, R. G., Ginzburg, M. 1972. Ultrastructure of two species of Halobacterium. Journal of Ultrastructure Research 41:80–94.PubMedCrossRefGoogle Scholar
  20. Klebahn, H. 1919. Die Schädlinge des Klippfisches. Ein Beitrag zur Kenntnis der salzliebenden Organismen, pp. 11–69. Mitteilungen aus dem Institut für allgemeine Botanik in Hamburg, vol. 4. Hamburg: Otto Meissners Verlag.Google Scholar
  21. Kocur, M., Bohâcek, J. 1972. DNA base composition of extremely halophilic cocci. Archiv für Mikrobiologie 82:280–282.PubMedCrossRefGoogle Scholar
  22. Kocur, M., Hodgkiss, W. 1973. Taxonomic status of the genus Halococcus Schoop. International Journal of Systematic Bacteriology 23:151–156.CrossRefGoogle Scholar
  23. Kocur, M., àmid, B., Martinec, T. 1972. The fine structure of extremely halophilic cocci. Microbios 5:101–107.PubMedGoogle Scholar
  24. Kushner, D. J. 1966. Mass culture of red halophilic bacteria. Biotechnology and Bioengineering 8:237–245.CrossRefGoogle Scholar
  25. Kushner, D. J. 1968. Halophilic bacteria, pp. 73–97. In: Umbreit, W. W., Perlman, D. (eds.), Advances in applied microbiology, vol. 10. New York, London: Academic Press.Google Scholar
  26. Kushner, D. J. 1978. Life in high salt and solute concentrations: Halophilic bacteria, pp. 317–368. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.Google Scholar
  27. Larsen, H. 1962. Halophilism, pp. 297–342. In: Gunsalus, I. C., Stanier, R. Y. (eds.), The bacteria, vol. 4. New York, London: Academic Press.Google Scholar
  28. Larsen, H. 1967. Biochemical aspects of extreme halophilism, pp. 97–132. In: Rose, A. H., Wilkinson, J. F. (eds.), Advances in microbial physiology, vol. 1. London, New York: Academic Press.Google Scholar
  29. Larsen, H. 1973. The halobacteria’s confusion to biology. Antonie van Leeuwenhoek Journal of Microbiology and Serology 39:383–396.CrossRefGoogle Scholar
  30. Larsen, H. 1980. Ecology of hypersaline environments, pp. 23–40. In: Nissenbaum, A. (ed.), Hypersaline brines and evaporitic environments. Amsterdam: Elsevier.CrossRefGoogle Scholar
  31. Larsen, H., Omang, S., Steensland, H. 1967. On the gas vacuoles of the halobacteria. Archiv für Mikrobiologie 59:197–203.PubMedCrossRefGoogle Scholar
  32. Lochhead, A. G. 1934. Bacteriological studies on the red discoloration of salted hides. Canadian Journal of Research 10:275–286.CrossRefGoogle Scholar
  33. Mohr, V., Larsen, H. 1963. On the structural transformations and lysis of Halobacterium salinarium in hypotonic and isotonic solutions. Journal of General Microbiology 31:267–280.CrossRefGoogle Scholar
  34. Moore, R. L., McCarthy, B. J. 1969. Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria. Journal of Bacteriology 99:248–254.PubMedGoogle Scholar
  35. Mullakhanbhai, M. F, Larsen, H. 1975. Halobacterium volcanii spec, no v., a Dead Sea halobacterium with a moderate salt requirement. Archives of Microbiology 104:207–214.PubMedCrossRefGoogle Scholar
  36. Nissenbaum, A. 1975. The microbiology and biogeochemistry of the Dead Sea. Microbial Ecology 2:139–161.CrossRefGoogle Scholar
  37. Oesterhelt, D. 1976. Isoprenoids and bacteriorhodopsin in halo-bacteria, pp. 134–166. In: Hahn, F. E. (ed.), Progress in molecular and subcellular biology, vol. 4. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  38. Onishi, H., McCance, M. E., Gibbons, N. E. 1965. A synthetic medium for extremely halophilic bacteria. Canadian Journal of Microbiology 11:365–373.PubMedCrossRefGoogle Scholar
  39. Petter, H. F. M. 1932. Over roode en andere bactérien van gezouten visch. Doctoral Thesis. Rijks-Universiteit te Utrecht.Google Scholar
  40. Post, F J. 1977. The microbial ecology of the Great Salt Lake. Microbial Ecology 3:143–165.CrossRefGoogle Scholar
  41. Raymond, J. C., Sistrom, W. R. 1969. Ectothiorhodospira halophila: A new species of the genus Ectothiorhodospira. Archiv für Mikrobiologie 69:121–126.PubMedCrossRefGoogle Scholar
  42. Reistad, R. 1975. Amino sugar and amino acid constituents of the cell wall of the extremely halophilic cocci. Archives of Microbiology 102:71–73.PubMedCrossRefGoogle Scholar
  43. Rodriguez-Valera, F, Ruiz-Berraquero, F, Ramos-Cormen-zana, A. 1978. Isolation of a strain of Halobacterium able to grow in media with glucose as only carbon and energy source, p. 92. In: Abstracts of the XII International Congress of Microbiology, Sept. 3–8, 1978, Munich. International Association of Microbiological Societies.Google Scholar
  44. Schoop, G. 1935. Halococcus litoralis, ein obligat halophiler Farbstoffbildner. Deutsche Tierärtzliche Wochenschrift 43:817–820.Google Scholar
  45. Sehgal, S. N., Gibbons, N. E. 1960. Effect of some metal ions on the growth of Halobacterium cutirubrum. Canadian Journal of Microbiology 6:165–169.PubMedCrossRefGoogle Scholar
  46. Shilo, M. (ed.). 1979. Strategies of microbial life in extreme environments: Report of the Dahlem Workshop on Strategy of Life in Extreme Environments, Berlin, 1978, November 20–24. Weinheim, New York: Verlag Chemie.Google Scholar
  47. Simon, R. D. 1978. Halobacterium strain 5 contains a plasmid which is correlated with the presence of gas vacuoles. Nature 273:314–317.PubMedCrossRefGoogle Scholar
  48. Steensland, H., Larsen, H. 1971. The fine structure of the extremely halophilic cocci, pp. 1–5. Det Kongelige Norske Videnskabers Selskab Skrifter No. 8.Google Scholar
  49. Swoager, W. C. 1973. Preservation of microorganisms by liquid nitrogen refrigeration. International Laboratory, January/ February: 42–46.Google Scholar
  50. Tindall, B. J., Mills, A. A., Grant, W. D. 1980. An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. Journal of General Microbiology 116:257–260.Google Scholar
  51. Tomlinson, G. A., Hochstein, L. I. 1972. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria. Canadian Journal of Microbiology 18:698–701.PubMedCrossRefGoogle Scholar
  52. Tomlinson, G. A., Hochstein, L. I. 1976. Halohacterium sac-charovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Canadian Journal of Microbiology 22:587–591.PubMedCrossRefGoogle Scholar
  53. Torsvik, T., Dundas, I. 1974. Bacteriophage of Halohacterium salinarium. Nature 248:680–681.PubMedCrossRefGoogle Scholar
  54. Volcani, B. E. 1940. Studies on the microflora of the Dead Sea. Doctoral thesis. Hebrew University, Jerusalem, Israel.Google Scholar
  55. Volcani, B. E. 1944. The microorganisms of the Dead Sea, pp. 71–85. In: Papers collected to commemorate the 70th anniversary of Dr. Chaim Weizmann. Rehovot, Palestine: Daniel Sieff Research Institute.Google Scholar
  56. Wais, A. C., Kon, M., MacDonald, R. E., Stollar, B. D. 1975. Salt-dependent bacteriophage infecting Halohacterium cuti-rubrum and//, halobium. Nature 256:314–315.PubMedCrossRefGoogle Scholar
  57. Woese, C. R., Magrum, L. J., Fox, G. E. 1978. Archaebacteria. Journal of Molecular Evolution 11:245–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Helge Larsen

There are no affiliations available

Personalised recommendations