Advertisement

The Dissimilatory Sulfur-Reducing Bacteria

  • Norbert Pfennig
  • Hanno Biebl

Abstract

The microbial reduction of elemental sulfur to hydrogen sulfide under anaerobic conditions has been observed and described repeatedly during the past 100 years (Beijerinck, 1895; Omelianski, 1904; Pelsh, 1936; Roy and Trudinger, 1970; Starkey, 1937; Woolfolk, 1962). Many different prokaryotic and eukaryotic microorganisms were shown to be able to reduce elemental sulfur in nonspecific, incidental side reactions in the course of their regular fermentative metabolism. Thiosulfate, methylene blue, aldehydes, or other compounds were also reduced. Under these circumstances, it is questionable whether the reduction of elemental sulfur plays any significant role in the normal metabolism of such cells (Roy and Trudinger, 1970).

Keywords

Electron Acceptor Enrichment Culture Green Sulfur Bacterium Sodium Sulfide Solution Sole Electron Donor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Beijerinck, W. M. 1895. Über Spirillum desulfuricans als Ursache von Sulfatreduktion. Centralblatt für Bakteriologie und Parasitenkunde, Abt. 2 1:1–9.Google Scholar
  2. Biebl, H., Pfennig, N. 1977. Growth of suifate-reducing bacteria with sulfur as electron acceptor. Archives of Microbiology 112:115–117.PubMedCrossRefGoogle Scholar
  3. Biebl, H., Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117:9–16.CrossRefGoogle Scholar
  4. Kusnezow, S. I. 1959. Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  5. Laanbroek, H. J., Stal, L. J., Veldkamp, H. 1978. Utilization of hydrogen and formate by Campylobacter spec, under aerobic and anaerobic conditions. Archives of Microbiology 119:99–102.PubMedCrossRefGoogle Scholar
  6. Larsen, H. 1953. On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Det Kongelig Norske Videnskabers Selskabs Skrifter 1.Google Scholar
  7. Miller, J. D. A., Saleh, A. M. 1964. A sulphate-reducing bacterium containing cytochrome c 3 but lacking desulfoviridin. Journal of General Microbiology 37:419–423.PubMedCrossRefGoogle Scholar
  8. Omelianski, W. 1904. Der Kreislauf des Schwefels, pp. 214–244. In: Lafar, F. (ed.), Handbuch der technischen Mykologie, vol. 3. Jena: Gustav Fischer Verlag.Google Scholar
  9. Opitz, R., Kirchner, G., Pfennig, N. 1981. Characteristics of new strains of De sulfur omonas acetoxidans and description of Desulfuromonas acetexigens sp. nov. Archives of Microbiology (in preparation).Google Scholar
  10. Pelsh, A.D. 1936. On new autotrophic hydrogen sulfide bacteria: Hydrogenthiobacteria, pp. 109–126. Moscow, Leningrad: Isdatelstvo Akademii Nauk SSSR.Google Scholar
  11. Pfennig, N., Biebl, H. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Archives of Microbiology 110:3–12.PubMedCrossRefGoogle Scholar
  12. Postgate, J. R. 1951. The reduction of sulphur compounds by Desulphovibrio desulphuricans. Journal of General Microbiology 5:725–738.PubMedCrossRefGoogle Scholar
  13. Roy, A. B., Trudinger, P. A. 1970. The biochemistry of inorganic compounds of sulphur. Cambridge: University Press.Google Scholar
  14. Starkey, R. L. 1937. Formation of sulfide by some sulfur bacteria. Journal of Bacteriology 33:545–571.PubMedGoogle Scholar
  15. Triiper, H. G., Pfennig, N. 1966. Sulphur metabolism in Thio-rhodaceae. III. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek Journal of Microbiology and Serology 32:261–276.CrossRefGoogle Scholar
  16. van Gemerden, H. 1968. On the ATP-generation by Chromatium in darkness. Archiv für Mikrobiologie 64:118–124.PubMedCrossRefGoogle Scholar
  17. Winter, M. 1978. Taxonomische und wachstumsphysiologische Charakterisierung von schwefelreduzierenden Stämmen einer neuen saprophytischen Campylobacter-Ait. Diploma Thesis. University of Göttingen, Göttingen, Federal Republic of Germany.Google Scholar
  18. Wolfe, R. S., Pfennig, N. 1977. Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Applied and Environmental Microbiology 33:427–433.PubMedGoogle Scholar
  19. Woolfoik, C.A. 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lysodeikticus. II. Stoi-chiometry with inorganic sulfur compounds. Journal of Bacteriology 84:659–668.Google Scholar
  20. Zinder, S. H., Brock, T. D. 1978. Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Archives of Microbiology 116:35–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Norbert Pfennig
  • Hanno Biebl

There are no affiliations available

Personalised recommendations