The Family Azotobacteraceae

  • Jan-Hendrik Becking

Abstract

The Azotobacteraceae are a coherent group of aerobic, free-living, heterotrophic bacteria whose main characteristic is the ability to fix atmospheric (molecular) nitrogen in a nitrogen-free or nitrogen-poor medium with organic carbon compounds as energy source. Although some representatives of this family can produce associative growth (which is different from symbiotic growth) with higher plants, members of this group are generally called nonsymbiotic nitrogen fixers.

Keywords

Starch Maize Sludge Molybdenum Gypsum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Altson, R. A. 1936. Studies on Azotobacter in Malayan soils. Journal of Agricultural Science 26:268–280.CrossRefGoogle Scholar
  2. Anderson, G. R. 1966. Identification of Beijerinckia from Pacific Northwest soils. Journal of Bacteriology 91:2105–2106.PubMedGoogle Scholar
  3. Antheunisse, J. 1972. Preservation of microorganisms. Antonie van Leeuwenhoek Journal of Microbiology and Serology 38:617–622.CrossRefGoogle Scholar
  4. Antheunisse, J. 1973. Viability of lyophilized microorganisms after storage. Antonie van Leeuwenhoek Journal of Microbiology and Serology 39:243–248.CrossRefGoogle Scholar
  5. Barber, L. E., Evans, H. J. 1976. Characterization of a nitrogen-fixing bacterial strain from the roots of Digitarla sanguinalis. Canadian Journal of Microbiology 22:254–260.PubMedCrossRefGoogle Scholar
  6. Barber, L. E., Tjepkema, J. D., Russell, S. A., Evans, H. J. 1976. Acetylene reduction (nitrogen fixation) associated with corn inoculated with Spirillum. Applied and Environmental Microbiology 32:108–113.PubMedGoogle Scholar
  7. Barooah, P. P., Sen, A. 1959. Studies on Beijerinckia from some acid soils in India. Indian Journal of Agricultural Science 29:36–51.Google Scholar
  8. Becking, J. H. 1959. Nitrogen-fixing bacteria of the genus Beijerinckia in South African soils. Plant and Soil 11:193–206.CrossRefGoogle Scholar
  9. Becking, J. H. 1961a. Studies on nitrogen-fixing bacteria of the genus Beijerinckia. I. Geographical and ecological distribution in soils. Plant and Soil 14:49–81.CrossRefGoogle Scholar
  10. Becking, J. H. 1961b. Studies on nitrogen-fixing bacteria of the genus Beijerinckia. II. Mineral nutrition and resistance to high levels of certain elements in relation to soil type. Plant and Soil 14:297–322.CrossRefGoogle Scholar
  11. Becking, J. H. 1962a. Species differences in molybdenum and vanadium requirements and combined nitrogen utilization by Azotobacteraceae. Plant and Soil 16:171–201.CrossRefGoogle Scholar
  12. Becking, J. H. 1962b. An aerobic heterotrophic Spirillum fixing atmospheric nitrogen. Proceedings of the Eighth International Congress for Microbiology, Montreal, Canada, Abstract B14.5.Google Scholar
  13. Becking, J. H. 1963. Fixation of molecular nitrogen by an aerobic Vibrio ox Spirillum. Antonie van Leeuwenhoek Journal of Microbiology and Serology 29:326.CrossRefGoogle Scholar
  14. Becking, J. H. 1971. Biological nitrogen fixation and its economic significance, pp. 189–222. In: Nitrogen-15 in soil-plant-studies. IAEA-PL-341/14. Vienna; International Atomic Energy Agency.Google Scholar
  15. Becking, J. H. 1974a. Nitrogen-fixing bacteria of the genus Beijerinckia. Soil Science 118:196–212.CrossRefGoogle Scholar
  16. Becking, J. H. 1974b. Family II. Azotobacteraceae Pribram 1933, 5; Genus III Beijerinckia Derx 1950, 145; Genus IV Derxia Jensen, Petersen, De and Bhattacharya 1960, 193, pp. 253, 256–261, 286, 288 (Plate 7.2), 289 (Plate 7.3). In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  17. Beijerinck, M. W. 1901a. On oligonitrophilous bacteria. Koninklijke Nederlandse Akademie van Wetenschappen 3:586–595.Google Scholar
  18. Beijerinck, M. W. 1901b. Ueber oligonitrophile Mikroben. Centralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 27:561–582.Google Scholar
  19. Beijerinck, M. W. 1921. Azotobacter chroococcum als indikator van de vruchtbaarheid van den grond. Verslagen Koninklijke Nederlandse Akademie van Wetenschappen, Wis-en Natuur-kundige Afdeling 30:431–438.Google Scholar
  20. Beijerinck, M. W. 1925. Ueber ein Spirillum, welches freien Stickstoff binden kann? Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten, Abt. 2 63:353–359.Google Scholar
  21. Bortels, H. 1930. Molybdän als Katalysator bei der biologischen Stickstoffbindung. Archiv für Mikrobiologie 1:333–342.CrossRefGoogle Scholar
  22. Breed, R. S., Murray, E. G. D., Smith, N. R. (eds.). 1957. Bergey’s manual of determinative bacteriology, 7th ed. Baltimore: Williams & Wilkins.Google Scholar
  23. Buchanan, R. E., Gibbons, N. E. (eds.). 1974. Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  24. Campêlo, A. B., Döbereiner, J. 1970. Ocorrência de Derxia sp. em solos de alguns Estados Brasileiros. Presquisa Agropecuâria Brasileira 5:327–332.Google Scholar
  25. Claus, D., Hempel, W. 1970. Specific substrates for isolation and differentiation of Azotobacter vinelandii. Archiv für Mikrobiologie 73:90–96.PubMedCrossRefGoogle Scholar
  26. Day, J. M., Döbereiner, J. 1976. Physiological aspects of N2-fixation by a. Spirillum from Digitarla roots. Soil Biology and Biochemistry 8:45–50.CrossRefGoogle Scholar
  27. Day, J. M., Neves, M. C. P., Döbereiner, J. 1975. Nitrogenase activity on the roots of tropical forage grasses. Soil Biology and Biochemistry 7:107–112.CrossRefGoogle Scholar
  28. Derx, H. G. 1950a. Beijerinckia, a new genus of nitrogen-fixing bacteria occurring in tropical soils. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 53:140–147.Google Scholar
  29. Derx, H. G. 1950b. Further researches on Beijerinckia. Annales Bogorienses 1:1–12.Google Scholar
  30. Derx, H. G. 1951a. Azotobacter insigne spec, nov., fixateur d’azote à flagellation polaire. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 54:342–350.Google Scholar
  31. Derx, H. G. 1951b. L’Accumulation spécifique de l’Azotobacter agile Beijerinck et de l’Azotobacter vinelandii Lipman. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 54:624–634.Google Scholar
  32. Döbereiner, J. 1961. Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugar cane. Plant and Soil 15:211–216.CrossRefGoogle Scholar
  33. Döbereiner, J. 1966. Azotobacter paspali sp. n., urna bacteria fixadora de nitrogênio na rizosfera de Paspalum. Presquisa Agropecuâria Brasileira 1:357–365.Google Scholar
  34. Döbereiner, J. 1968. Non-symbiotic nitrogen fixation in tropical soils. Presquisa Agropecuária Brasileira 3:1–6.Google Scholar
  35. Döbereiner, J. 1970. Further research on Azotobacter paspali and its variety specific occurrence in the rhizosphere of Paspalum notatum Flugge. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 124:224–230.Google Scholar
  36. Döbereiner, J., Alvahydo, R. 1959. Sôbre a influência da cana-de-açúcar na ocorrência de ‘Beijerinckia’; no solo. II. Influência das diversas partes do vegetal. Revista Brasileira de Biologia 19:401–412.Google Scholar
  37. Döbereiner, J., Day, J. M. 1976. Associative symbiosis in tropical grasses: Characterization of microorganisms and dinitro-gen-fixing sites, pp. 518–538. In: Newton, E., Nijman, C. J. (eds.), Proceedings of the First International Symposium on Nitrogen Fixation, vol. 2. Washington: Pullman.Google Scholar
  38. Döbereiner, J., Marriel, I. E., Nery, M. 1976. Ecological distribution of Spirillum lipoferum Beijerinck. Canadian Journal of Microbiology 22:1464–1473.PubMedCrossRefGoogle Scholar
  39. Döbereiner, J., Ruschel, A. P. 1958. Urna nova espécie de Beijerinckia. Revista de Biologia 1:261–272.Google Scholar
  40. Dommerques, Y. 1963. Distribution des Azotobacter et des Beijerinckia dans les principaux types de sol de l’ouest Africain. Annales de l’Institut Pasteur 105:179–187.Google Scholar
  41. Florenzano, G., Balloni, W., Materassi, R. 1968. Nitrogen-fixing bacteria of the genus Beijerinckia in Venezuelan soils. Transactions of the Ninth International Congress of Soil Science, Adelaide, Australia 2:125–128.Google Scholar
  42. Henzell, E. P., Norris, D. O. 1962. Processes by which nitrogen is added to the soil/plant system, pp. 1–25. In: Bulletin 46, Commonwealth Bureau of Pasture and Field Crops. Berkshire, Hurley.Google Scholar
  43. Hill, S. 1971. Influence of oxygen concentration on the colony type of Derxia gummosa grown on nitrogen-free media. Journal of General Microbiology 67:77–83.CrossRefGoogle Scholar
  44. Hill, S., Postgate, J. R. 1969. Failure of putative nitrogen-fixing bacteria to fix nitrogen. Journal of General Microbiology 58:277–285.PubMedCrossRefGoogle Scholar
  45. Jensen, H. L. 1955. Azotobacter macrocytogenes n. sp., a nitrogen-fixing bacterium resistant to acid reaction. Acta Agri-culturae Scandinavica 5:278–293.Google Scholar
  46. Jensen, H. L. 1965. Non-symbiotic nitrogen fixation, pp. 436–480. In: Bartholomew, W. V., Clark, F. E. (eds.), Soil nitrogen. Monograph 10. Madison, Wisconsin: American Society of Agronomy.Google Scholar
  47. Jensen, H. L., Petersen, E. J., De, P. K., Bhattacharya, R. 1960. A new nitrogen-fixing bacterium: Derxia gummosa nov. gen. nov. spec. Archiv für Mikrobiologie 36:182–195.CrossRefGoogle Scholar
  48. Jensen, V. 1955. The Azotobacter-flora. of some Danish watercourses. Saertryk at Botanisk Tidsskrift 52:143–157.Google Scholar
  49. Jensen, V. 1961. Rhamnose for detection and isolation of Azotobacter vinelandii Lipman. Nature 190:832–833.PubMedCrossRefGoogle Scholar
  50. Jensen, V., Petersen, E. J. 1954. Studies on the occurrence of Azotobacter in Danish forest soils, pp. 95–110. In: Royal Veterinary and Agricultural College, Yearbook 1954 . Copenhagen: Kandrup & Wunsch.Google Scholar
  51. Jensen, V., Petersen, E. J. 1955. Taxonomic studies on Azotobacter chroococcum Beij. and Azotobacter beijerinckii Lipman, pp. 107–126. In: Royal Veterinary and Agricultural College, Yearbook 1955 . Copenhagen: Kandrup & Wunsch.Google Scholar
  52. Johnstone, D. B. 1955. Azotobacter fluorescence. Journal of Bacteriology 69:481–482.PubMedGoogle Scholar
  53. Johnstone, D. B. 1957a. Isolation of Azotobacter agile from strawboard waste water. Ecology 38:156.CrossRefGoogle Scholar
  54. Johnstone, D. B. 1957b. The use of a fluorimeter in the characterization of fluorescing substances elaborated by Azotobacter. Applied Microbiology 5:103–106.PubMedGoogle Scholar
  55. Johnstone, D. B. 1974. Genus I. Azotobacter Beijerinck 1901, 567; Genus II. Azomonas Winogradsky 1938, 391, pp. 254–256. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  56. Johnstone, D. B., Fishbein, J. R. 1956. Identification of Azotobacter species by fluorescence and cell analysis. Journal of General Microbiology 14:330–335.PubMedCrossRefGoogle Scholar
  57. Jordan, D. C., McNicol, P. J. 1978. Identification of Beijerinckia in the High Arctic (Devon Island, Northwest Territories). Applied and Environmental Microbiology 35:204–205.PubMedGoogle Scholar
  58. Kauffmann, J., Toussaint, P. 1951. Un nouveau germe fixateur de l’azote, atmosphérique Azotobacter lacticogenes. Revue Générale de Botanique 58:553–561.Google Scholar
  59. Kluyver, A. J., Becking, J. H. 1955. Some observations on the nitrogen-fixing bacteria of the genus Beijerinckia Derx. Annales Academiae Scientiarum Fennicae A II 60:367–380.Google Scholar
  60. Kluyver, A. J., van den Bout, M. T. 1936. Notiz über Azotobacter agilis Beijerinck. Archiv für Mikrobiologie 7:261–263.CrossRefGoogle Scholar
  61. Kluyver, A. J., van Reenen, W. J. 1933. Über Azotobacter agilis Beijerinck. Archiv für Mikrobiologie 4:280–301.CrossRefGoogle Scholar
  62. Lipman, J. G. 1903a. Nitrogen-fixing bacteria, p. 217. Doctor’s Thesis. Cornell University, Ithaca, New York, June 1903. New Jersey State Agricultural Experiment Station, Annual Report. New Jersey: State Printers.Google Scholar
  63. Lipman, J. G. 1903b. Experiments on the transformation and fixation of nitrogen by bacteria. New Jersey State Agricultural Experiment Station, Annual Report 24:215–285.Google Scholar
  64. Lipman, J. G. 1905. Soil bacteriological studies. New Jersey State Agricultural Experiment Station, Seventeenth Annual Report over 1904. New Jersey: State Printers, pp. 237–289.Google Scholar
  65. Materassi, R., Florenzano, G., Balloni, W., Flavilli, F. 1966. Su una nuova specie di Beijerinckia (Beijerinckia venezuelae nov. sp.) isolata da terreni venezuelani. Annali di Microbiologia ed Enzimologia 16:201–215.Google Scholar
  66. Meiklejohn, J. 1954. Notes on nitrogen-fixing bacteria from East African soils, pp. 123–125. Proceedings of the Fifth International Congress of Soil Science, vol. 3.Google Scholar
  67. Meiklejohn, J. 1968. New nitrogen fixers from Rhodesian soils. Transactions of the Ninth International Congress of Soil Science, Adelaide Australia 2:141–149.Google Scholar
  68. Meyerhof, O., Burk, D. 1928. Über die Fixation des Luftstick-stoffs durch Azotobacter. Zeitschrift für Physiologische Chemie 139:117–142.Google Scholar
  69. Nayak, D. N., Rao, V. R. 1977. Nitrogen fixation by Spirillum sp. from rice roots. Archiv für Mikrobiologie 115: 359–360.Google Scholar
  70. Patriquin, D. G., Döbereiner, J. 1978. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Canadian Journal of Microbiology 24:734–742.PubMedCrossRefGoogle Scholar
  71. Reuszer, H. W. 1939. The effect of benzoic acid compounds upon the abundance of microorganisms, including Azotobacter organisms, in a soil. Proceedings of the Third Commission of the International Society of Soil Science A:151–160.Google Scholar
  72. Roy, A. B., Sen, S. 1962. A new species of Derxia. Nature 194:604–605.CrossRefGoogle Scholar
  73. Ruinen, J. 1956. Occurrence of Beijerinckia species in the “phyllosphere”. Nature 177:220–221.CrossRefGoogle Scholar
  74. Ruinen, J. 1961. The phyllosphere. I. An ecologically neglected milieu. Plant and Soil 15:81–109.CrossRefGoogle Scholar
  75. Schröder, M. 1932. Die Assimilation des Luftstickstoffs durch einige Bakterien. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 85:177–212.Google Scholar
  76. Shutter, J., Wilson, P. S. 1955. Patterns of enzymic adaptation in species of the genus Azotobacter. Journal of General Microbiology 12:446–454.CrossRefGoogle Scholar
  77. Smit, J. 1954. Preliminary note on a new variety of Azotobacter agile. Journal of General Microbiology llrvii.Google Scholar
  78. Smith, R. L., Bouton, J. H., Schank, S. C., Quesenbeek, K. H., Tyler, M. E., Milam, J. R., Gaskins, M. H., Littell, R. C. 1976. Nitrogen fixation in grasses inoculated with Spirillum lipoferum. Science 193:1003–1005.PubMedCrossRefGoogle Scholar
  79. Starkey, R. L., De, P. K. 1939. A new species of Azotobacter. Soil Science 47:329–343.Google Scholar
  80. Suto, T. 1954. An acid fast Azotobacter in a volcanic ash soil. Science Reports of the Research Institutes Tohoku University, Japan 6:25–31.Google Scholar
  81. Tarrand, J. J., Krieg, N. R., Döbereiner, J. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azo-spirillum lipoferum (Beijerinck) comb. nov. and Azo spirillum brasilense sp. nov. Canadian Journal of Microbiology 24:967–980.PubMedCrossRefGoogle Scholar
  82. Tchan, Y. T. 1953a. Studies of N-fixing bacteria. III. Azotobacter beijerinckii (Lipman, 1903), var. acido-tolerans (Tchan, 1952). Proceedings of the Linnean Society of New South Wales 78:83–84.Google Scholar
  83. Tchan, Y. T. 1953b. Studies of N-fixing bacteria. V. Presence of Beijerinckia in Northern Australia and geographic distribution of non-symbiotic N-fixing microorganisms. Proceedings of the Linnean Society of New South Wales 78:171–178.Google Scholar
  84. Tchan, Y. T. 1957. Studies of nitrogen-fixing bacteria. VI. Anew species of nitrogen-fixing bacteria. Proceedings of the Linnean Society of New South Wales 82:314–316.Google Scholar
  85. Tchan, Y. T., Jensen, H. L. 1963. Studies of nitrogen fixing bacteria. VIII. Influence of N-content of the media on the N-fixation capacity and the colony variation of Derxia gummosa Jensen et al. (1960). Proceedings of the Linnean Society of New South Wales 88:379–385.Google Scholar
  86. Thompson, J. P. 1968. The occurrence of nitrogen-fixing bacteria of the genus Beijerinckia in Australia outside the tropical zone, pp. 129–139. Transactions of the Ninth International Congress of Soil Science, Adelaide, vol. 2.Google Scholar
  87. Vancura, V., Abd-el-Malek, Y., Zayed, M. N. 1965. Azotobacter and Beijerinckia in the soils and rhizosphere of plants in Egypt. Folia Microbiologica 10:224–228.PubMedCrossRefGoogle Scholar
  88. von Bülow, J. F. W., Döbereiner, J. 1975. Potential for nitrogen fixation in maize genotypes in Brazil. Proceedings of the National Academy of Sciences of the United States of America 72:2389–2393.CrossRefGoogle Scholar
  89. Wieringa, K. T.: see Smit, J. Wilson, P. W., Knight, S. G. 1947. Experiments in bacterial physiology. Minneapolis: Burgess.Google Scholar
  90. Winogradsky, S. 1932. Études sur la microbiologie du sol. 5e mémoire. Analyse microbiologique du sol. Principes d’une nouvelle méthode. Annales de l’Institut Pasteur 48:89.Google Scholar
  91. Winogradsky, S. 1938. Études sur la microbiologie du sol et des eaux. IX. Sur la morphologie et l’oecologie des Azotobacter. Annales de l’Institut Pasteur 60:351–400, plate nos. V, VI, and VII.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Jan-Hendrik Becking

There are no affiliations available

Personalised recommendations