Advertisement

Nonpathogenic Members of the Genus Pseudomonas

  • Heinz Stolp
  • Dilip Gadkari

Abstract

The pseudomonads are chemoorganotrophic bacteria that can grow at the expense of a variety of organic substrates, except the one-carbon compounds. Because of their versatility, they play a significant role in nature and are met with great interest in several fields of bacteriology, such as microbiology of soils and waters, human and veterinary medicine, plant pathology, industrial microbiology, and genetics. Bacteriologist-s working in different fields often proposed new specific names for “new” bacteria that, by comparative studies, later proved to be identical. The historical development thus created a considerable amount of synonymy and nomenclatural confusion. For example, bacteria now regarded as representatives of Pseudomonas cepacia formerly belonged to Chromobacterium ianthinum (Sneath, 1956), Pseudomonas multivorans (Stanier, Palleroni, and Doudoroff, 1966), and Pseudomonas kingii (Jonsson, 1970).

Keywords

Mineral Medium Pigment Production Sole Nitrogen Source Arginine Dihydrolase Gelatin Hydrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderes, E. A., Sandine, W. E., Elliker, P. R. 1971. Lipid of antibiotic-sensitive and -resistant strains of Pseudomonas aeruginosa. Canadian Journal of Microbiology 17: 1357–1365.PubMedGoogle Scholar
  2. Andrews, A. R. 1976. Possible cause of anomalies in the oxidation-fermentation test. Journal of Applied Bacteriology 41:493–496.Google Scholar
  3. Annear, D. I., MacCulloch, D. 1974. Cold-sensitive strain of Pseudomonas aeruginosa from urinary-tract infection. Lancet ii:1382.Google Scholar
  4. Aragno, M., Schlegel, H. G. 1977. Alcaligenes ruhlandii (Packer and Vishniac) comb. nov., a peritrichous hydrogen bacterium previously assigned to Pseudomonas. International Journal of Systematic Bacteriology 27:279–281.Google Scholar
  5. Auling, G., Reh, M., Lee, C. M., Schlegel, H. G. 1978. Pseudomonas pseudoflava, a new species of hydrogen-oxidizing bacteria: Its differentiation from Pseudomonas flava and other yellow-pigmented, Gram-negative, hydrogen-oxidizing species. International Journal of Systematic Bacteriology 28:82–95.Google Scholar
  6. Ballard, R. W., Doudoroff, M., Stanier, R. Y., Mandel, M. 1968. Taxonomy of the aerobic pseudomonads: Pseudomonas diminuta and Pseudomonas vesiculare. Journal of General Microbiology 53:349–361.PubMedGoogle Scholar
  7. Ballard, R. W., Palleroni, N. J., Doudoroff, M., Mandel, M. 1970. Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, Pseudomonas marginata, Pseudomonas alliicola and Pseudomonas caryophylli. Journal of General Microbiology 60:199–214.PubMedGoogle Scholar
  8. Baumann, L., Baumann, P., Mandel, M., Allen, R. D. 1972. Taxonomy of aerobic marine eubacteria. Journal of Bacteriology 110:402–429.PubMedGoogle Scholar
  9. Bendich, A. J., McCarthy, B. J. 1970. Ribosomal RNA homologies among distantly related organisms. Proceedings of the National Academy of Sciences of the United States of America 65:349–356.PubMedGoogle Scholar
  10. Blaschy, H., Zimmermann, W. 1971. Gaschromatographische Untersuchungen von Fettsäuren verschiedener Bakterienarten. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Reihe A 218:468–477.Google Scholar
  11. Blazevic, D. J., Koepcke, M. H., Matsen, J. M. 1973. Incidence and identification of Pseudomonas fluorescens and Pseudomonas putida in the clinical laboratory. Applied Microbiology 25:107–110.PubMedGoogle Scholar
  12. Bobo, R. A., Eagon, R. G. 1968. Lipids of cell walls of Pseudomonas aeruginosa and Brucella abortus. Canadian Journal of Microbiology 14:503–513.PubMedGoogle Scholar
  13. Breed, R. S., Murray, E. G. D., Smith, N. R. (eds.). 1957. Bergey’s manual of determinative bacteriology, 7th ed. Baltimore: Williams & Wilkins.Google Scholar
  14. Brian, B. L., Gardner, E. W. 1967. Preparation of bacterial fatty acid methyl esters for rapid characterization by gas-liquid chromatography. Applied Microbiology 15:1499–1500.PubMedGoogle Scholar
  15. Brian, B. L., Gardner, E. W. 1968. A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Applied Microbiology 16:549–552.PubMedGoogle Scholar
  16. Brisou, J. 1958. Étude de quelques Pseudomonadaceae. Classification. Thesis. Bordeaux: A. Baillet.Google Scholar
  17. Brown, V. I., Lowbury, E. J. L. 1965. Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. Journal of Clinical Pathology 18:752–756.PubMedGoogle Scholar
  18. Buchanan, R. E., Gibbons, N. E. (eds.). 1974. Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  19. Cerny, G. 1976. Method for the distinction of Gram negative from Gram positive bacteria. European Journal of Applied Microbiology 3:223–225.Google Scholar
  20. Chai, T., Chen, C., Rosen, A., Levin, R. E. 1968. Detection and incidence of specific species of spoilage bacteria on fish. II. Relative incidence of Pseudomonas putrefaciens and fluorescent pseudomonads on haddock fillets. Applied Microbiology 16:1738–1741.PubMedGoogle Scholar
  21. Chang, P. C., Blackwood, A. C. 1969. Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436. Canadian Journal of Microbiology 15:439–444.PubMedGoogle Scholar
  22. Christensen, W. B. 1946. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. Journal of Bacteriology 52:461–466.PubMedGoogle Scholar
  23. Colwell, R. R. 1964. A study of features used in the diagnosis of Pseudomonas aeruginosa. Journal of General Microbiology 37:181–194.PubMedGoogle Scholar
  24. Coote, J. G., Hassall, H. 1973. The degradation of L-histidine, imidazolyl-L-lactate and imidazolyl-propionate by Pseudomonas testosteroni. Biochemical Journal 132:409–422.PubMedGoogle Scholar
  25. Cowan, S. T. 1975. Cowan and Steel’s manual for the identification of medical bacteria. London: Cambridge University Press.Google Scholar
  26. Cullen, J., Phillips, M. C., Shipley, G. G. 1971. The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens. Biochemical Journal 125:733–742.PubMedGoogle Scholar
  27. Curry, J. C., Butera, E. G. 1971. A laboratory comparison of selective media for Pseudomonas in cosmetics and toiletries. Developments in Industrial Microbiology 12:165–172.Google Scholar
  28. Davis, D. H., Stanier, R. Y., Doudoroff, M., Mandel, M. 1970. Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species. Archiv für Mikrobiologie 70:1–13.PubMedGoogle Scholar
  29. DeCicco, B. T., Noon, K. F. 1973. Thermophilic mutants of Pseudomonas fluorescens. Archiv für Mikrobiologie 90: 297–340.PubMedGoogle Scholar
  30. Dees, S. B., Moss, C. W. 1975. Cellular fatty acids of Alcaligenes and Pseudomonas sp. isolated from clinical specimens. Journal of Clinical Microbiology 1:414–419.PubMedGoogle Scholar
  31. Delafield, F. P., Doudoroff, M., Palleroni, N. J., Lusty, C. J., Contopoulou, R. 1965. Decomposition of poly-β-hydroxy-butyrate by pseudomonads. Journal of Bacteriology 90:1455–1466.PubMedGoogle Scholar
  32. De Ley, J., Park, I. W., Tijtgat, R., van Ermengem, J. 1966. DNA homology and taxonomy of Pseudomonas and Xanthomonas. Journal of General Microbiology 42:43–56.PubMedGoogle Scholar
  33. den Dooren de Jong, L. E. 1926. Bijdrage tot de Kennis van het mineralisatieproces, pp. 1–199. Thesis. Technische Hooge-school, Delft.Google Scholar
  34. Doudoroff, M., Palleroni, N. J. 1974. Part 7, Family I, Genus I. Pseudomonas, pp. 217–243. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  35. Esanu, J. G., Schubert, R. H. W. 1973. Taxonomy and nomenclature of Pseudomonas cepacia. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Reihe A 224:478–483.Google Scholar
  36. Franklin, M., Franklin, M. A. 1973. Pseudomonas. Beecham Pharma Mainz-Weisenau: Rheindruck Boppard.Google Scholar
  37. Fuerst, J. A., Hayward, A. C. 1969. Surface appendages similar to fimbriae (pili) on Pseudomonas species. Journal of General Microbiology 58:227–239.PubMedGoogle Scholar
  38. Gaby, W. L. 1955. Taxonomic problems relating to the identification of species within the genus Pseudomonas. International Bulletin of Bacteriological Nomenclature 5:153–160.Google Scholar
  39. Gilardi, G. L. 1968. Diagnostic criteria for differentiation of pseudomonads pathogenic for man. Applied Microbiology 16:1497–1502.PubMedGoogle Scholar
  40. Gilardi, G. L. 1969. Evaluation of media for differentiating nonfermenting Gram-negative bacteria of medical significance. Applied Microbiology 18:355–359.PubMedGoogle Scholar
  41. Gilardi, G. L. 1971. Characterization of Pseudomonas species isolated from clinical specimens. Applied Microbiology 21:414–419.PubMedGoogle Scholar
  42. Gilardi, G. L. 1973. Nonfermentative Gram-negative bacteria encountered in clinical specimens. Antonie van Leeuwenhoek Journal of Microbiology and Serology 39:229–242.Google Scholar
  43. Gill, C. O. 1975. Effect of growth temperature on the lipids of Pseudomonas fluorescens. Journal of General Microbiology 89:293–298.PubMedGoogle Scholar
  44. Gill, C. O., Penney, N. 1977. Penetration of bacteria into meat. Applied and Environmental Microbiology 33:1284–1286.PubMedGoogle Scholar
  45. Goldschmidt, M. C., Lockhart, B. M., Perry, K. 1971. Rapid methods for determining decarboxylase activity: Ornithine and lysine decarboxylases. Applied Microbiology 22: 344–349.PubMedGoogle Scholar
  46. Goto, S., Enomoto, S. 1970. Nalidixic acid cetrimide agar. A new selective plating medium for the selective isolation of Pseudomonas aeruginosa. Japanese Journal of Microbiology 14:65–72.PubMedGoogle Scholar
  47. Grant, M. A., Holt, J. G. 1977. Medium for the selective isolation of members of the genus Pseudomonas from natural habitats. Applied and Environmental Microbiology 33: 1222–1224.PubMedGoogle Scholar
  48. Grossbard, E., Wingfield, G. I. 1975. The effect of herbicides on cellulose decomposition, pp. 236–256. In: Board, R. G., Lovelock, D. W. (eds.), Some methods for microbiological assay. London, New York: Academic Press.Google Scholar
  49. Hallmann, L., Burkhardt, F. 1974. Klinische Mikrobiologie. S. 76. Stuttgart: Georg Thieme Verlag.Google Scholar
  50. Hart, A., Kite, P. E. 1977. Comparison of four selective agars for the isolation of pseudomonads. Applied and Environmental Microbiology 33:1209–1214.PubMedGoogle Scholar
  51. Hart, A., Moore, K. E., Tall, D. 1976. A comparison of the British Pharmacopoeia (1973) and United States Pharmacopoeia (1975) methods for detecting pseudomonads. Journal of Applied Bacteriology 41:235–242.PubMedGoogle Scholar
  52. Hassall, H. 1966. The adaptive degradation of imidazolelactic acid by Pseudomonas acidovorans. Biochemical Journal 101:22.Google Scholar
  53. Hassall, H., Rabie, F. 1966. The bacterial metabolism of imid-azolepropionate. Biochimica et Biophysica Acta 115: 521–523.PubMedGoogle Scholar
  54. Haynes, W. C. 1951. Pseudomonas aeruginosa—its characterization and identification. Journal of General Microbiology 5:939–950.PubMedGoogle Scholar
  55. Hendrie, M. S., Shewan, J. M. 1970. The identification of certain Pseudomonas species, pp. 1–7. In: Gibbs, B. M., Skinner, F. A. (eds.), Identification methods for microbiologists. London, New York: Academic Press.Google Scholar
  56. Herbert, R. B., Holliman, F. G. 1964. Aeruginosin B—A naturally occurring phenazinesulfonic acid, p. 19. London: Proceedings of the Chemical Society.Google Scholar
  57. Hill, I.R. 1973. Multiple inoculation technique for rapid identification of bacteria, pp. 175–189. In: Baillie, A., Gilbert, R. J. (eds.), Automation, mechanization and data handling in microbiology. London, New York: Academic Press.Google Scholar
  58. Hoadley, A. W., Cheng, C. M. 1974. The recovery of indicator bacteria on selective media. Journal of Applied Bacteriology 37:45–47.PubMedGoogle Scholar
  59. Holding, A. J. 1960. The properties and classification of the predominant Gram-negative bacteria occurring in soil. Journal of Applied Bacteriology 23:515–525.Google Scholar
  60. Holliman, F. G. 1957. Pigments from a red strain of Pseudomonas aeruginosa. Chemical Industries 28:1668.Google Scholar
  61. Holmes, B., Owen, R. J., Evans, A., Malnick, H., Willcox, W. R. 1977. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. International Journal of Systematic Bacteriology 27:133–146.Google Scholar
  62. Hugh, R., Gilardi, G. L. 1974. Pseudomonas, pp. 250–269. In: Lennette, E. H., Spaulding, E. H., Truant, J. P. (eds.), Manual of clinical microbiology, 2nd ed. Washington, D.C.: American Society for Microbiology.Google Scholar
  63. Hugh, R., Leifson, E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of Bacteriology 66:24–26.PubMedGoogle Scholar
  64. Jay, J. M. 1970. Modern food microbiology, p. 16. New York: van Nostrand.Google Scholar
  65. Jeffries, C. D., Holtman, D. F, Guse, D. G. 1957. Rapid method for determining the activity of microorganisms on nucleic acids. Journal of Bacteriology 73:590–591.PubMedGoogle Scholar
  66. Johns, P. A., Tischer, R. G. 1973. Characterization of Pseudomonas species for identification in the clinical laboratory. American Journal of Medical Technology 39:495–500.PubMedGoogle Scholar
  67. Jones, L. F., Pinto, B. V., Thomas, E. T., Farmer, J. J., III. 1973. Simplified method for producing pyocins from Pseudomonas aeruginosa. Applied Microbiology 26: 120–121.PubMedGoogle Scholar
  68. Jones, L. F., Zakanycz, J. P., Thomas, E. T., Farmer, J. J., III. 1974. Pyocin typing of Pseudomonas aeruginosa: A simplified method. Applied Microbiology 27:400–406.PubMedGoogle Scholar
  69. Jonsson, V. 1970. Proposal of anew species Pseudomonas kingii. International Journal of Systematic Bacteriology 20:255–257.Google Scholar
  70. Juffs, H. S. 1973. Identification of Pseudomonas spp. isolated from milk produced in south eastern Queensland. Journal of Applied Bacteriology 36:585–598.PubMedGoogle Scholar
  71. Kaltenbach, C. M., Moss, C. W., Weaver, R. E. 1975. Cultural and biochemical characteristics and fatty acid composition of Pseudomonas diminuta and Pseudomonas vesiculare. Journal of Clinical Microbiology 1:339–344.PubMedGoogle Scholar
  72. Kawai, Y, Yabuuchi, E. 1975. Pseudomonas pertucinogena sp. nov., an organism previously misidentified as Bordetella pertussis. International Journal of Systematic Bacteriology 25:317–323.Google Scholar
  73. King, E. O., Ward, M. K., Raney, D. E. 1954. Two single media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory and Clinical Medicine 44:301–307.PubMedGoogle Scholar
  74. Kistemaker, P. C., Meuzelaar, H. L. C., Posthumus, M. A. 1975. Rapid and automated identification of microorganisms by Curie-point pyrolysis techniques. II. Fast identification of microbiological samples by Curie-point pyrolysis mass spec-trometry, pp. 179–191. In: Hedén, C.-G., Illéni, T. (eds.), New approaches to the identification of microorganisms. New York: John Wiley & Sons.Google Scholar
  75. Klinge, K. 1958. Pseudomonas fluorescens Polysaccharide als Schutz gegen Phagozytose durch Amöben. Naturwissenschaften 45:550–551.Google Scholar
  76. Klinge, K. 1959. Pseudomonas fluorescens, ein Boden- und Wasserkeim. II. Antibiotische Wirkungen unterP.fluorescens-Stämmen. Archiv für Mikrobiologie 33:406–415.PubMedGoogle Scholar
  77. Klinge, K. 1960. Differential techniques and methods of isolation of Pseudomonas. Journal of Applied Bacteriology 23:442–462.PubMedGoogle Scholar
  78. Korth, H. 1962. On the selective formation of phenazine-α-carbonic acid in Pseudomonas aeruginosa in acid medium and its quality as redox catalyst. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig. 185:511–515.Google Scholar
  79. Korth, H. 1971. Einfluß von Eisen und Sauerstoff auf die Pigmentbildung bei verschiedenen Pseudomonas-Spezies. Archiv für Mikrobiologie 77:59–64.PubMedGoogle Scholar
  80. Lambert, M. A. S., Moss, C. W. 1973. Use of gas chromatography for detecting ornithine and lysine decarboxylase activity in bacteria. Applied Microbiology 26:517–520.PubMedGoogle Scholar
  81. Lechevalier, M. P. 1977. Lipids in bacterial taxonomy—a taxonomist’s view. CRC Critical Reviews in Microbiology 5:109–210.PubMedGoogle Scholar
  82. Lee, F. W. 1973. Non-flagellate Pseudomonas aeruginosa in pathological material. Journal of Clinical Pathology 26:826–827.PubMedGoogle Scholar
  83. Lindberg, R. B. 1974. Culture and identification of commonly encountered Gram-negative bacilli: Pseudomonas, Klebsi-ella-Enterobacter, Serratia, Proteus, and Providencia, p. 24. In: Prier, J. E., Friedman, H. (eds.), Opportunistic pathogens. London: Macmillan.Google Scholar
  84. Lluch, C., Callao, V., Olivares, J. 1973. Pigment production by Pseudomonas reptilovora. I. Effect of iron concentration in culture media. Archiv für Mikrobiologie 93:239–243.PubMedGoogle Scholar
  85. Long, H. F., Hammer, B. W. 1941. Classification of organisms important in dairy products. III. Pseudomonas putrefaciens. Research Bulletin of Iowa Agricultural Experimental Station 285:176–195.Google Scholar
  86. Lowbury, E. J. L., Collins, A. G. 1955. The use of a new cetrimide product in a selective medium for Pseudomonas aeruginosa. Journal of Clinical Pathology 8:47–48.PubMedGoogle Scholar
  87. Lysenko, O. 1961. Pseudomonas—an attempt at a general classification. Journal of General Microbiology 25:379–408.PubMedGoogle Scholar
  88. McMeekin, T. A. 1977. Spoilage association of chicken leg muscle. Applied and Environmental Microbiology 33: 1244–1246.PubMedGoogle Scholar
  89. Mandel, M. 1966. Deoxyribonucleic acid base composition in the genus Pseudomonas. Journal of General Microbiology 43:273–292.PubMedGoogle Scholar
  90. Masurovsky, E. G., Goldblith, S. A., Voss, J. 1963. Differential medium for selection and enumeration of members of the genus Pseudomonas. Journal of Bacteriology 85: 722–723.PubMedGoogle Scholar
  91. Mayfield, C. I., Inniss, W. E. 1977. A rapid method for staining bacterial flagella. Canadian Journal of Microbiology 23: 1311–1313.PubMedGoogle Scholar
  92. Migula, W. 1894. Über ein neues System der Bakterien. Arbeiten des Bakteriologischen Instituts Karlsruhe 1:235–238.Google Scholar
  93. Miller, A., Sandine, W. E., Elliker, P. R. 1971. Fatty acid composition of lipid synthesized by Pseudomonas fragi. Journal of Dairy Science 54:919.PubMedGoogle Scholar
  94. Miller, A., III, Scanlan, R. A., Lee, J. S., Libbey, L. M. 1973. Volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas putrefaciens, Pseudomonas fluorescens, and an Achromobacter species. Applied Microbiology 26:18–21.PubMedGoogle Scholar
  95. Mitruka, B. M. 1975. Rapid automated identification of microorganisms in clinical specimens by gas chromatography, pp. 123–154. In: Hedén, C.-G., Illéni, T. (eds.), New approaches to the identification of microorganisms. New York: John Wiley & Sons.Google Scholar
  96. Mitruka, B. M., Bonner, M. J. 1976. Methods of detection and identification of bacteria. Cleveland: CRC Press.Google Scholar
  97. Muller, V. 1954. Distribution of amino acid decarboxylases in Enterobacteriaceae. Acta Pathologica et Microbiologica Scandinavica 35:259–278.Google Scholar
  98. Morris, M. B., Roberts, J. B. 1959. A group of pseudomonads able to synthesize poly-β-hydroxybutyric acid. Nature 183:1538–1539.PubMedGoogle Scholar
  99. Moss, C. W., Kaltenbach, C. M. 1974. Production of glutaric acid: A useful criterion for differentiating Pseudomonas diminuta from Pseudomonas vesiculare. Applied Microbiology 27:437–439.PubMedGoogle Scholar
  100. Moss, C. W., Lambert, M. A., Merwin, W. H. 1974. Comparison of rapid methods for analysis of bacterial fatty acids. Applied Microbiology 28:80–85.PubMedGoogle Scholar
  101. Moss, C. W., Samuels, S. B., Weaver, R. E. 1972. Cellular fatty acid composition of selected Pseudomonas species. Applied Microbiology 24:596–598.PubMedGoogle Scholar
  102. Moss, C. W., Samuels, S. B., Liddle, J., McKinney, R. M. 1973. Occurrence of branched-chain hydroxy fatty acids in Pseudomonas maltophilia. Journal of Bacteriology 114: 1018–1024.PubMedGoogle Scholar
  103. Mossel, D. A. A., Devor, H., Eelderink, I. 1976. A further simplified procedure for the detection of Pseudomonas aeruginosa in contaminated aqueous substrata. Journal of Applied Bacteriology 41:307–309.PubMedGoogle Scholar
  104. Noseworthy, J. E., Moskovits, G. 1974. Applicability of cetrimide, nitrofurantoin, TTC, and sodium arsenite to the isolation of marine pseudomonads. Canadian Journal of Microbiology 20:1065–1069.PubMedGoogle Scholar
  105. Oliver, J. D., Colwell, R. R. 1973a. Extractable lipids of Gram-negative marine bacteria: Fatty acid composition. International Journal of Systematic Bacteriology 23:442–458.Google Scholar
  106. Oliver, J. D., Colwell, R. R. 1973b. Extractable lipids of Gram-negative bacteria: Phospholipid composition. Journal of Bacteriology 114:897–908.PubMedGoogle Scholar
  107. Ørskov, J. 1958. On the peculiar way in which strains of Pseudomonas fluorescens produce polysaccharide in media containing saccharose. Acta Pathologica et Microbiologica Scandinavica 43:267–273.PubMedGoogle Scholar
  108. Ottow, J. C. C., Zolg, W. 1974. Improved procedure and colorimetric test for the detection of ortho- and meta-cleavage of protocatechuate by Pseudomonas isolates. Canadian Journal of Microbiology 20:1059–1061.PubMedGoogle Scholar
  109. Palleroni, N. J. 1975. General properties and taxonomy of the genus Pseudomonas, pp. 1–34. In: Clarke, P. H., Richmond, M. H., (eds.), Genetics and biochemistry of Pseudomonas. New York: John Wiley & Sons.Google Scholar
  110. Palleroni, N. J., Doudoroff, M. 1971. Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. Journal of Bacteriology 107:690–696.PubMedGoogle Scholar
  111. Palleroni, N. J., Doudoroff, M. 1972. Some properties and taxo-nomic subdivisions of the genus Pseudomonas. Annual Review of Phytopathology 10:73–100.Google Scholar
  112. Palleroni, N. J., Doudoroff, M., Stanier, R. Y. 1970. Taxonomy of the aerobic pseudomonads: The properties of the Pseudomonas Stutzeri group. Journal of General Microbiology 60:215–231.PubMedGoogle Scholar
  113. Palleroni, N. J., Ballard, R. W., Ralston, E., Doudoroff, M. 1972. Deoxyribonucleic acid homologies among some Pseudomonas species. Journal of Bacteriology 110:1–11.PubMedGoogle Scholar
  114. Palleroni, N. J., Kunisawa, R., Contopoulou, R., Doudoroff, M. 1973. Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology 23:333–339.Google Scholar
  115. Pau, W. S., Terry, C. S. 1976. The effect of medium composition upon the production of pyocin. Journal of Applied Bacteriology 41:369–377.PubMedGoogle Scholar
  116. Pechey, D. T., Yau, A. O. P., James, A. M. 1974. Total and surface lipid of cells of Pseudomonas aeruginosa and their relationship to gentamicin resistance. Microbios 11:77–86.Google Scholar
  117. Pickett, M. J., Pedersen, M. M. 1970a. Characterization of saccharolytic nonfermentative bacteria associated with man. Canadian Journal of Microbiology 16:351–362.PubMedGoogle Scholar
  118. Pickett, M. J., Pedersen, M. M. 1970b. Salient features of nonsaccharolytic and weakly saccharolytic nonfermentative rods. Canadian Journal of Microbiology 16:401–409.PubMedGoogle Scholar
  119. Poynter, S. F. B., Mead, G. C. 1964. Volatile organic liquids and slime production. Journal of Applied Bacteriology 27: 182–195.Google Scholar
  120. Quigley, M. M., Colwell, R. R. 1968. Properties of bacteria isolated from deep-sea sediments. Journal of Bacteriology 95:211–220.PubMedGoogle Scholar
  121. Ralston, E. 1972. Some contributions to the taxonomy of the genus Pseudomonas. Ph.D. Thesis. University of California, Berkeley, California.Google Scholar
  122. Ralston, E., Palleroni, N. J., Doudoroff, M. 1972. DNA homologies of some so-called Hydrogenomonas species. Journal of Bacteriology 109:465–466.PubMedGoogle Scholar
  123. Rhodes, M. E. 1959. The characterization of Pseudomonas fluorescens. Journal of General Microbiology 21:221–263.Google Scholar
  124. Richard, C. 1968. Techniques rapides de recherche des lysine-décarboxylase, ornithine-décarboxylase et arginine-dihydro-lase dans les genres Pseudomonas, Alcaligenes et Moraxella. Annales de l’Institut Pasteur 114:425–430.PubMedGoogle Scholar
  125. Robert-Gero, M., Poiret, M., Stanier, R. Y. 1969. The function of the β-ketoadipate pathway in Pseudomonas acidovorans. Journal of General Microbiology 57:207–214.PubMedGoogle Scholar
  126. Rogul, M., Brendle, J. J., Haapala, D. K., Alexander, A. D. 1970. Nucleic acid similarities among Pseudomonas pseudo-mallei, Pseudomonas multivorans and Actinobacillus mallei. Journal of Bacteriology 101:827–835.PubMedGoogle Scholar
  127. Rosenberg, S. L., Hegeman, G. D. 1969. Clustering of functionally related genes in Pseudomonas aeruginosa. Journal of Bacteriology 99:353–355.PubMedGoogle Scholar
  128. Russel, W. J., Zettler, J. F., Blanchard, G. C., Boling, E. A. 1975. Bacterial identification by microcalorimetry, pp. 101–121. In: Hedén, C.-G., Illéni, T., (eds.), New approaches to the identification of microorganisms. New York: John Wiley & Sons.Google Scholar
  129. Sands, D. C., Schroth, M. N., Hildebrand, D. C. 1970. Taxonomy of phytopathogenic pseudomonads. Journal of Bacteriology 101:9–23.PubMedGoogle Scholar
  130. Schaad, N. W., Sowell, G., Jr., Goth, R. W., Colwell, R. R., Webb, R. E. 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. International Journal of Systematic Bacteriology 28:117–125.Google Scholar
  131. Schubert, R., Scheiber, P. 1975. Das Vorkommen von Pseudomonas aeruginosa in Grundwasser, Oberflächenwasser und in Wasserversorgungsleitungen in tropischen Gebieten. Gas-Wasserfach 116:413–415.Google Scholar
  132. Schubert, R. H. W., Esanu, J. G., Esanu, F. 1973. A simplified scheme for identification of Pseudomonas species occurring in surface and underground waters. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Reihe B 158:183–193.Google Scholar
  133. Schulten, H.-R. 1975. High-resolution field ionization and field desorption mass spectrometry of pyrolysis products of complex organic materials, pp. 155–164. In: Hedén, C.-G., Illéni, T., (eds.), New approaches to the identification of microorganisms. New York: John Wiley & Sons.Google Scholar
  134. Seleen, W. A., Stark, C. N. 1943. Some characteristics of green fluorescent pigment producing bacteria. Journal of Bacteriology 46:491–500.PubMedGoogle Scholar
  135. Seeliger, H. P. R., Holl, K. M. 1961. Zur Differentialdiagnose von Enterobakteriaceen mit dem Lysin-Decarboxylase-Test. Zeitschrift für Hygiene und Infektionskrankheiten 147: 336–346.PubMedGoogle Scholar
  136. Sierra, F., Veringa, H. A. 1958. Effect of oxy-chlororaphine on the growth in vitro of Streptomyces species and some pathogenic fungi. Nature 182:265.PubMedGoogle Scholar
  137. Sierra, G. 1957. A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek Journal of Microbiology and Serology 23:15–22.Google Scholar
  138. Simon, A., Ridge, E. H. 1974. The use of ampicillin in a simplified selective medium for the isolation of fluorescent pseudo-monads. Journal of Applied Bacteriology 37:459–460.PubMedGoogle Scholar
  139. Sneath, P. H. A. 1956. Cultural and biochemical characteristics of the genus Chromobacterium. Journal of General Microbiology 15:70–98.PubMedGoogle Scholar
  140. Sneath, P. H. A., Collins, V. G. 1974. A study in test reproducibility between laboratories: Report of a Pseudomonas working party. Antonie van Leeuwenhoek Journal of Microbiology and Serology 40:481–527.Google Scholar
  141. Snell, J. J. S., Hill, L. R., Lapage, S. P., Curtis, M. A. 1972. Identification of Pseudomonas cepacia Burkholder and its synonymy with Pseudomonas kingii Jonsson. International Journal of Systematic Bacteriology 22:127–138.Google Scholar
  142. Solberg, M., O’Leary, V. S., Riha, W. E., Jr., 1972. New medium for the isolation and enumeration of pseudomonads. Journal of Applied Microbiology 24:544–550.Google Scholar
  143. Stanier, R. Y, Palleroni, N. J., Doudoroff, M. 1966. The aerobic pseudomonads: A taxonomic study. Journal of General Microbiology 43:159–271.PubMedGoogle Scholar
  144. Steinhauer, J. E., Flentge, R. L., Lechowich, R. V. 1967. Lipid patterns of selected microorganisms as determined by gas-liquid chromatography. Applied Microbiology 15:826–829.PubMedGoogle Scholar
  145. Sutter, V. L. 1968. Identification of Pseudomonas species isolated from hospital environment and human sources. Applied Microbiology 16:1532–1538.PubMedGoogle Scholar
  146. Takeda, R. 1958. Pseudomonas pigments. II. Two pigments, 1-phenazine-carboxylic acid and hydroxychlororaphine, produced by Pseudomonas aeruginosa T 359. Hakko Kogaku Zasshi 36:286–290.Google Scholar
  147. Thornley, M. J. 1960. The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. Journal of Applied Bacteriology 23:37–52.Google Scholar
  148. van der Kooij, D. 1977. The occurrence of Pseudomonas spp. in surface water and in tap water as determined on citrate media. Antonie van Leeuwenhoek Journal of Microbiology and Serology 43:187–197.Google Scholar
  149. Wade, T. J., Mandel, R. J. 1974. New gas chromatographic characterization procedure: Preliminary studies on some Pseudomonas species. Applied Microbiology 27:303–311.PubMedGoogle Scholar
  150. Wilkinson, S. G. 1972. Composition and structure of the orni-thine-containing lipid from Pseudomonas rubescens. Biochimica et Biophysica Acta 270:1–17.PubMedGoogle Scholar
  151. Wilkinson, S. G., Bell, M. E. 1971. The phosphoglucolipid from Pseudomonas diminuta. Biochimica et Biophysica Acta 248:293–299.PubMedGoogle Scholar
  152. Wilkinson, S. G., Galbraith, L., Lightfoot, G. A. 1973. Cell walls, lipids, and lipopolysaccharides of Pseudomonas species. European Journal of Biochemistry 33:158–174.PubMedGoogle Scholar
  153. Zolg, W., Ottow, J. C. G. 1973. Improved thin-layer technique for detection of arginine dihydrolase among the Pseudomonas species. Applied Microbiology 26:1001–1003.PubMedGoogle Scholar
  154. Zolg, W., Ottow, J. C. G. 1974. Thin-layer chromatography of arginine, lysine and ornithine decarboxylase activity among Pseudomonas spp. and Enterobacteriaceae. Microbios 10: 225–231.PubMedGoogle Scholar
  155. Zolg, W., Ottow, J. C. G. 1975. Pseudomonas glathei sp. nov., a new nitrogen-scavenging rod isolated from acid lateritic relicts in Germany. Zeitschrift für Allgemeine Mikrobiologie 15:287–299.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Heinz Stolp
  • Dilip Gadkari

There are no affiliations available

Personalised recommendations