The Genera Hyphomicrobium, Pedomicrobium, and Hyphomonas

  • Richard L. Moore

Abstract

An organism that resembles the presently recognized type species of the genus Hyphomicrobium, H. vulgare Stutzer and Hartleb 1898, was first described over 82 years ago by Rullman (1897). The budding mode of reproduction in hyphomicrobia was not fully recognized, however, until many years later (Henrici and Johnson, 1935; Kingma-Boltjes, 1936). Pongratz (1957) isolated a budding bacterium that is morphologically quite similar to H. vulgare, but with strikingly different nutritional requirements. He recommended the formation of a new genus and named the organism Hyphomonas polymorpha. Leifson (1964) isolated a budding marine bacterium which he named Hyphomicrobium neptunium. However, on the basis of nutritional requirements and the results of DNA-homology studies (Moore and Hirsch, 1972), this organism would be more appropriately placed in the genus Hyphomonas; it will be considered in this manner throughout the following discussion. The third and most recently described genus within the group of prosthecate-budding bacteria is Pedomicrobium (Aristovskaya, 1961, 1963a).

Keywords

Manganese Nitrite Pyruvate Sewage Glutamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aristovskaya, T. V. 1961. The accumulation of iron accompanying the decomposition of organo-mineral complexes of humus substances by microorganisms. Doklady Akademii Nauk SSSR [English translation] 136:954–957.Google Scholar
  2. Aristovskaya, T. V. 1963a. Decomposition of organo-mineral compounds in podzolic soils. Pochvovedenie [English translation] 1:30–43.Google Scholar
  3. Aristovskaya, T.V. 1963b. Natural forms of existence of soil bacteria. Microbiology [English translation of Mikrobiologiya] 32:564–568.Google Scholar
  4. Attwood, M. M., Harder, W. 1972. A rapid and specific enrichment procedure for Hyphomicrobium spp. Antonie van Leeu-wenhoek Journal of Microbiology and Serology 38:369–378.CrossRefGoogle Scholar
  5. Attwood, M. M., Harder, W. 1974. The oxidation and assimilation of C2 compounds by Hyphomicrobium sp. Journal of General Microbiology 84:350–356.CrossRefGoogle Scholar
  6. Auran, T. B., Schmidt, E. L. 1972. Similarities between Hyphomicrobium and Nitrobacter with respect to fatty acids. Journal of Bacteriology 109:450–451.PubMedGoogle Scholar
  7. Austin, B., Allen, D. A., Zachary, A., Dallas, M. R., Colwell, R. R. 1979. Ecology and taxonomy of bacteria attaching to wood surfaces in a tropical harbour. Canadian Journal of Microbiology 25:447–461.PubMedCrossRefGoogle Scholar
  8. Bauld, J., Marshall, D. C. 1971. Quantitative description of morphological changes during growth of the pleomorphic budding bacterium. Antonie van Leeuwenhoek Journal of Microbiology and Serology 37:401–407.CrossRefGoogle Scholar
  9. Bauld, J., Tyler, P. A. 1971. Taxonomic implications of reproductive mechanisms of Hyphomicrobium-facies and Pedomicrobium-facies of a pleomorphic budding bacterium. Antonie van Leeuwenhoek Journal of Microbiology and Serology 37:417–424.CrossRefGoogle Scholar
  10. Bauld, J., Tyler, P. A., Marshall, K. C. 1971. Pleomorphy of a budding bacterium on various carbon sources. Antonie van Leeuwenhoek Journal of Microbiology and Serology 37:409–416.CrossRefGoogle Scholar
  11. Blackman, N. A., Weiner, R. M. 1975. Photomicrography of nalidixic acid treated Hyphomicrobium neptunium: Inhibition of bud formation and bud separation. Canadian Journal of Microbiology 21:226–230.PubMedCrossRefGoogle Scholar
  12. Buchanan, R. E., Gibbons, N. E. (eds.) 1974. Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  13. Conti, S. F., Hirsch, P. 1965. Biology of budding bacteria. III. Fine structure of Rhodomicrobium and Hyphomicrobium spp. Journal of Bacteriology 89:503–512.PubMedGoogle Scholar
  14. Eckhardt, E. W., Roggentin, P., Hirsch, P. 1979. Fatty acid composition of various hyphal budding bacteria. Archives of Microbiology 120:81–85.CrossRefGoogle Scholar
  15. Gebers, R. 1978. Neue Pedomicrobium spp.: Biologie und Taxonomie. Ph.D. Thesis. Christian-Albrechts-Universitat, Kiel, Federal Republic of Germany.Google Scholar
  16. Gebers, R., Hirsch, P. 1978. Isolation and investigation of Pedomicrobium spp., heavy metal-depositing bacteria from soil habitats, pp. 911–921. In: Krumbein, W. E. (ed.), Environmental biogeochemistry and geomicrobiology. Vol. 3: Methods metals and assessment. Ann Arbor, Michigan: Ann Arbor Science Publishers.Google Scholar
  17. Geitler, L. 1965. Ein Hyphomicrobium als Bewohner der Gallertmembran der Süsswasser-Rhodphycee Kyliniella. Archiv für Mikrobiologie 51:399–400.PubMedCrossRefGoogle Scholar
  18. Gerencser, V. F., Voelz, H. 1971. A bacteriophage active on Hyphomicrobium. Virology 44:631–632.PubMedCrossRefGoogle Scholar
  19. Goldfine, H., Hagen, P.-O. 1968. N-methyl groups in bacterial lipids. III. Phospholipids of hyphomicrobia. Journal of Bacteriology 95:367–375.PubMedGoogle Scholar
  20. Hagen, P. L., Goldfine, H., Williams, P. J. le B. 1966. Phospholipids of bacteria with extensive intracytoplasmic membranes. Science 151:1543–1544.PubMedCrossRefGoogle Scholar
  21. Harder, W., Attwood, M. M. 1978. Biology, physiology and biochemistry of hyphomicrobia. Advances in Microbial Physiology 17:303–359.PubMedCrossRefGoogle Scholar
  22. Harder, W., Matin, A., Attwood, M. M. 1975. Studies on the physiological significance of the lack of a pyruvate dehydrogenase complex in Hyphomicrobium sp. Journal of General Microbiology 86:319–326.PubMedCrossRefGoogle Scholar
  23. Harrison, D. E. F. 1973. Studies on the affinity of methanol- and methane-utilizing bacteria for their carbon substrates. Journal of Applied Bacteriology 36:301–308.PubMedCrossRefGoogle Scholar
  24. Havenner, J. A., McCardell, B. A., Weiner, R. M. 1979. Development of a defined minimal and complete media for the growth of Hyphomicrobium neptunium. Applied Environmental Biology 38:18–23.Google Scholar
  25. Henrici, A. T., Johnson, D. E. 1935. Studies of freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes. Journal of Bacteriology 30:61–93.PubMedGoogle Scholar
  26. Hirsch, P. 1968. Biology of budding bacteria. IV. Epicellular deposition of iron by aquatic budding bacteria. Archiv für Mikrobiologie 60:201–216.PubMedCrossRefGoogle Scholar
  27. Hirsch, P. 1974. Budding bacteria. Annual Review of Microbiology 28:391–444.PubMedCrossRefGoogle Scholar
  28. Hirsch, P., Conti, S. F. 1964a. Biology of budding bacteria. I. Enrichment, isolation and morphology of Hyphomicrobium spp. Archiv für Mikrobiologie 48:339–357.PubMedCrossRefGoogle Scholar
  29. Hirsch, P., Conti, S. F. 1964b. Biology of budding bacteria. II. Growth and nutrition of Hyphomicrobium spp. Archiv für Mikrobiologie 48:358–367.PubMedCrossRefGoogle Scholar
  30. Hirsch, P., Pankratz, S. H. 1970. Study of bacterial populations in natural environments by use of submerged electron microscope grids. Zeitschrift für Allgemeine Mikrobiologie 10:589–605.PubMedCrossRefGoogle Scholar
  31. Hirsch, P., Rheinheimer, G. 1968. Biology of budding bacteria. V. Budding bacteria in aquatic habitats: Occurrence, enrichment and isolation. Archiv für Mikrobiologie 62:289–306.PubMedCrossRefGoogle Scholar
  32. Jones, H. E., Hirsch, P. 1968. Cell wall composition of Hyphomicrobium species. Journal of Bacteriology 96:1037–1041.PubMedGoogle Scholar
  33. Kingma-Boltjes, T. Y. 1936. Über Hyphomicrobium vulgare Stutzer et Hartleb. Archiv für Mikrobiologie 7:188–205.CrossRefGoogle Scholar
  34. Kriss, A. E. 1963. Marine microbiology [deep sea]. Translated from the German by J. E. Shewan and Z. Kabata. New York: Interscience.Google Scholar
  35. Larson, R. J., Pate, J. L. 1976. Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum. Journal of Bacteriology 126:282–293.PubMedGoogle Scholar
  36. Leifson, E. 1964. Hyphomicrobium neptunium sp. n. Antonie van Leeuwenhoek Journal of Microbiology and Serology 30:249–256.CrossRefGoogle Scholar
  37. Mandel, M., Hirsch, P., Conti, S. F. 1972. Deoxyribonucleic acid base compositions of hyphomicrobia. Archiv für Mikrobiologie 81:289–294.PubMedCrossRefGoogle Scholar
  38. Mandel, M., Leadbetter, E. R., Pfennig, N., Trüper, G. H. 1971. Deoxyribonucleic acid base compositions of photo-trophic bacteria. International Journal of Systematic Bacteriology 21:222–230.CrossRefGoogle Scholar
  39. Mevius, W., Jr. 1953. Beiträge zur Kenntnis von Hyphomicrobium vulgare Stutzer et Hartleb. Archiv für Mikrobiologie 19:1–29.PubMedCrossRefGoogle Scholar
  40. Moore, R. L. 1977. Ribosomal ribonucleic acid cistron homologies among Hyphomicrobium and various other bacteria. Canadian Journal of Microbiology 23:478–481.PubMedCrossRefGoogle Scholar
  41. Moore, R. L., Brubaker, R. R. 1976. Effect of cis-platinum (II) diamminodichloride on cell division of Hyphomicrobium and Caulobacter. Journal of Bacteriology 125:317–323.PubMedGoogle Scholar
  42. Moore, R. L., Hirsch, P. 1972. Deoxyribonucleic acid base sequence homologies of some budding and prosthecate bacteria. Journal of Bacteriology 110:256–261.PubMedGoogle Scholar
  43. Moore, R. L., Hirsch, P. 1973a. First generation synchrony of isolated Hyphomicrobium swarmer populations. Journal of Bacteriology 116:418–423.PubMedGoogle Scholar
  44. Moore, R. L., Hirsch, P. 1973b. Nuclear apparatus of Hyphomicrobium. Journal of Bacteriology 116:1447–1455.PubMedGoogle Scholar
  45. Park, C. E., Berger, L. R. 1967. Complex lipids of Rhodomicrobium vannielii. Journal of Bacteriology 93:221–229.PubMedGoogle Scholar
  46. Pate, J. L., Ordal, E. J. 1965. The fine structure of two unusual stalked bacteria. Journal of Cell Biology 27:130–133.CrossRefGoogle Scholar
  47. PernTev, B. V., Gabe, D. R. 1961. Capillary methods of investigating micro-organisms. [In Russian.] Moscow: Izdatel’stvo Akademii Nauk SSSR. Shewan, J. M., translator. 1969. Toronto: University of Toronto Press.Google Scholar
  48. PernTev, B. V., Gabe, D. R., Gal’perina, A. M., Rabinovich, V. A., Sapotnitskii, A. A., Sherman, É. É., Troshanov, É. P. 1964. Applied capillary microscopy: The role of microorganisms in the formation of iron-manganese deposits. Moscow: Izdatel’stvo Akademii Nauk SSSR. Sinclair, F. L., translator. 1965. New York: Consultants Bureau.Google Scholar
  49. Pongratz, E. 1957. D’une bactérie pédiculée isolée d’un pus de sinus. Schweizerische Zeitschrift für Allgemeine Pathologie und Bakteriologie 20:593–608.PubMedGoogle Scholar
  50. Porter, J. S., Pate, J. L. 1975. Prosthecae of Asticcacaulis biprosthecum. Journal of Bacteriology 122:976–986.PubMedGoogle Scholar
  51. Rullman, W. 1897. Über ein Nitrosobakterium mit neuen Wuchsformen. Zentralblatt für Bakteriologie und Parasitenkunde 3:228–231.Google Scholar
  52. Schmidt, J. M. 1971. Prosthecate bacteria. Annual Review of Microbiology 25:93–110.PubMedCrossRefGoogle Scholar
  53. Schultz, G. A., Chaconas, G., Moore, R. L. 1978. Polyadenylic acid sequences in the RNA of Hyphomicrobium. Journal of Bacteriology 133:569–575.PubMedGoogle Scholar
  54. Shah, R. G., Bhat, J. V. 1968. Occurrence of Hyphomicrobium and Caulobacter spp. in bore-well water. Current Science 37:571–573.Google Scholar
  55. Sperl, G. T., Hoare, D. S. 1971. Denitrification with methanol: A selective enrichment for Hyphomicrobium species. Journal of Bacteriology 108:733–736.PubMedGoogle Scholar
  56. Staley, J. T. 1971. Incidence of prosthecate bacteria in a polluted stream. Applied Microbiology 22:496–502.PubMedGoogle Scholar
  57. Stanley, P. M., Moore, R. L., Staley, J. T. 1976. Characterization of two new isolates of mushroom-shaped budding bacteria. International Journal of Bacteriology 26:522–527.CrossRefGoogle Scholar
  58. Stanley, P. M., Ordal, E. J., Staley, J. T. 1979. High numbers of prosthecate bacteria in pulp mill waste aeration lagoons. Applied and Environmental Microbiology 37:1007–1011.PubMedGoogle Scholar
  59. Stutzer, A., Hartleb, R. 1898. Untersuchungen über die bei der Bildung von Salpeter beobachteten Mikroorganismen. Abhandlungen und Mitteilungen des Landwirtschaftlishen Instituts der Königlichen Universität Breslau 1:75–100.Google Scholar
  60. Ten, K. 1967. Iron- and manganese-oxidizing microorganisms in soils of south Sakhalin. Microbiology [English translation of Mikrobiologiya] 36:276–281.Google Scholar
  61. Tyler, P. A. 1970. Hyphomicrobia and the oxidation of manganese in aquatic ecosystems. Antonie van Leeuwenhoek Journal of Microbiology and Serology 36:567–578.CrossRefGoogle Scholar
  62. Tyler, P. A., Marshall, K. C. 1967a. Pleomorphy in stalked, budding bacteria. Journal of Bacteriology 93:1132–1136PubMedGoogle Scholar
  63. Tyler, P. A., Marshall, K. C. 1967b. Form and function in manganese-oxidizing bacteria. Archiv für Mikrobiologie 56:344–353.CrossRefGoogle Scholar
  64. Tyler, P. A., Marshall, K. C. 1967c. Microbial oxidation of manganese in hydro-electric pipelines. Antonie van Leeuwenhoek Journal of Microbiology and Serology 33:171–183.CrossRefGoogle Scholar
  65. Voelz, H., Gerencser, V. F., Kaplan, R. 1971. Bacteriophage replication in Hyphomicrobium. Virology 44:622–630.PubMedCrossRefGoogle Scholar
  66. Weiner, R. A., Blackman, M. A. 1973. Inhibition of deoxyribonucleic acid synthesis and bud formation by nalidixic acid in Hyphomicrobium neptunium. Journal of Bacteriology 116:1398–1404.PubMedGoogle Scholar
  67. Weiner, R. M., Schimel, L., Rosen, A. 1975. The isolation of Hyphomicrobium from the mouth of the Patuxent River and the isolation and characterization of Hyphomicrobium from a Rock Creek tributary. Chesapeake Science 16:153–161.CrossRefGoogle Scholar
  68. Whittenbury, R., Dow, C. S. 1977. Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria. Bacteriological Reviews 41:754–808.PubMedGoogle Scholar
  69. Wilkinson, T. G., Hamer, G. 1972. Some growth characteristics of a Hyphomicrobium sp. in batch culture. Journal of Applied Bacteriology 35:577–588.CrossRefGoogle Scholar
  70. Wilkinson, T. G., Harrison, D. E. F. 1973. The affinity for methane and methanol of mixed cultures grown on methane in continuous culture. Journal of Applied Bacteriology 36:309–313.PubMedCrossRefGoogle Scholar
  71. Wilkinson, T. G., Topiwals, H. H., Hamer, G. 1974. Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnology and Bioengineering 16:41–59.PubMedCrossRefGoogle Scholar
  72. Zavarzin, G. A. 1960. The life cycle and nuclear apparatus in Hyphomicrobium vulgare Stutz, and Hartleb. Microbiology [English translation of Mikrobiologiya] 29:24–27.Google Scholar
  73. Zavarzin, G. A. 1969. Bacteria in relation to manganese metabolism, pp. 612–623. In: Gray, T. R. G., Parkinson, D. (eds), The ecology of soil bacteria. Liverpool: Liverpool University Press.Google Scholar
  74. ZoBell, C. E. 1941. Studies on marine bacteria. I: The cultural requirements of heterotrophic aerobes. Journal of Marine Research 4:42–75.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Richard L. Moore

There are no affiliations available

Personalised recommendations