The Order Cytophagales (with Addenda on the Genera Herpetosiphon, Saprospira, and Flexithrix)

  • Hans Reichenbach
  • Martin Dworkin

Abstract

In our discussion of the gliding bacteria (this Handbook, Chapter 19), we have proposed an alternative classification to that in Bergey’s Manual of Determinative Bacteriology, eighth edition. In accordance with those ideas, this chapter will deal exclusively with unicellular gliding bacteria. All of them are Gram-negative, rod-shaped, slender cells that are often rather delicate; in some cases the cells are very short, but more often they are quite long (Fig. 1). Many organisms of this group exhibit change in cell shape, which either leads to spherical resting cells (microcysts) or results at least in highly pleomorphic populations. In contrast to myxobacteria, no complex morphological structures such as fruiting bodies are produced. As we define them, the Cytophagales include at present the following genera: Cytophaga, Flexibacter, Sporocytophaga, Sphaero-cytophagalCapnocytophaga, Microscilla, and Lysobacter (see Table 1; Fig. 1). The group is, however more heterogenous than may seem from this classification, and will certainly require the establishment of additional genera in the future.

Keywords

Sludge CaCl2 Bacillus Galle Gelatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aasen, A. J., Liaaen-Jensen, S. 1966. The carotenoids of flexibacteria II. A new xanthophyll from Saprospira grandis. Acta Chemica Scandinavica 20:811–819.PubMedGoogle Scholar
  2. Achenbach, H., Kohl, W., Reichenbach, H. 1978. The flexi-rubin-type pigments—a novel class of natural pigments from gliding bacteria. Revista Latinoamericana de Quimica 9:111–124.Google Scholar
  3. Ajmal, M., Hobbs, B. C. 1967. Causes and effects of columnaris-type diseases in fish. Nature 215:141–142.PubMedGoogle Scholar
  4. Anacker, R. L., Ordal, E. J. 1955. Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris. Journal of Bacteriology 70:738–741.PubMedGoogle Scholar
  5. Anderson, J. I. W., Conroy, D. A. 1969. The pathogenic myxo-bacteria with special reference to fish diseases. Journal of Applied Bacteriology 32:30–39.PubMedGoogle Scholar
  6. Anderson, R. L., Ordal, E. J. 1961a. Cytophaga succinicans sp. n., a facultatively anaerobic aquatic myxobacterium. Journal of Bacteriology 81:130–138.PubMedGoogle Scholar
  7. Anderson, R. L., Ordal, E. J. 1961b. CO2-dependent fermentation of glucose of Cytophaga succinicans. Journal of Bacteriology 81:139–146.PubMedGoogle Scholar
  8. Bachmann, B. J. 1955. Studies on Cytophaga fermentans, n. sp., a facultatively anaerobic lower myxobacterium. Journal of General Microbiology 13:541–551.PubMedGoogle Scholar
  9. Baechler, C. A., Berk, R. S. 1972. Ultrastructural observations of Pseudomonas aeruginosa: Rhapidosomes. Microstructures 3:24–31.Google Scholar
  10. Becker, C. D., Fujihara, M. P. 1978. The bacterial pathogen Flexibacter columnaris and its epizootiology among Columbia River fish. Monograph No. 2. Washington, D.C.: American Fisheries Society.Google Scholar
  11. Behrens, H. 1978. Charakterisierung der DNA gleitender Bakterien der Ordnung Cytophagales. Doctor’s thesis. Technical University Braunschweig, Federal Republic of Germany.Google Scholar
  12. Bretscher, A. P., Kaiser, D. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. Journal of Bacteriology 133:763–768.PubMedGoogle Scholar
  13. Brockman, E. R. 1967. Fruiting myxobacteria from the South Carolina coast. Journal of Bacteriology 94:1253–1254.PubMedGoogle Scholar
  14. Callies, E., Mannheim, W. 1978. Classification of the Flavo-bacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration. International Journal of Systematic Bacteriology 28:14–19.Google Scholar
  15. Christensen, P. J. 1973. Studies on soil and freshwater cyto-phagas. Ph.D. thesis. University of Alberta, Edmonton, Canada.Google Scholar
  16. Christensen, P. J. 1977a. The history, biology, and taxonomy of the Cytophaga group. Canadian Journal of Microbiology 23:1599–1653.PubMedGoogle Scholar
  17. Christensen, P. J. 1977b. Synonymy of Flavobacterium pecti-novorum Dorey with Cytophaga johnsonae Stanier. International Journal of Systematic Bacteriology 27:122–132.Google Scholar
  18. Christensen, P. J., Cook, F. D. 1978. Lysobacter, a new genus of nonfruiting gliding bacteria with a high base ratio. International Journal of Systematic Bacteriology 28:367–393.Google Scholar
  19. Colgrove, D. J., Wood, J. W. 1966. Occurrence and control of Chondrococcus columnaris as related to Fraser River sockeye salmon. Progress Report No. 15 of the International Pacific Salmon Fisheries Commission, New Westminster, British Columbia, Canada.Google Scholar
  20. Collins, V. G. 1970. Recent studies of bacterial pathogens of freshwater fish. Water Treatment and Examination 19:3–31.Google Scholar
  21. Couke, P., Voets, J. P. 1967. The mineral requirements of Polyangium cellulosum. Zeitschrift für Allgemeine Mikrobiologie 7:175–182.Google Scholar
  22. Dawson, R. M. C., Elliott, D. C., Elliott, W. H., Jones, K. M. (eds). 1972. Data for biochemical research, p. 508. Oxford: Clarendon Press.Google Scholar
  23. Deufel, J. 1974. Wirkung von Mefarol auf Fische und den Erreger der bakteriellen Kiemenschwellung. Der Fischwirt. In: Zeitschrift für Binnenfischerei 24.Google Scholar
  24. Drews, G. 1974. Mikrobiologisches Praktikum, 2nd ed., p. 6. Berlin: Springer-Verlag.Google Scholar
  25. Dubos, R. 1928. The decomposition of cellulose by aerobic bacteria. Journal of Bacteriology 15:223–234.PubMedGoogle Scholar
  26. Fâhraeus, G. 1947. Studies on the cellulose decomposition by Cytophaga. Symbolae Botanicae Upsalienses 9(2): 1–128.Google Scholar
  27. Ferry, J. G., Smith, P. H., Wolfe, R.S. 1974. Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methano spirillum hungatii sp. nov. International Journal of Systematic Bacteriology 24:465–469.Google Scholar
  28. Gräf, W. 1961. Anaerobe Myxobakterien, neue Mikroben in der menschlichen Mundhöhle. Archiv für Hygiene und Bakteriologie 145:504–459.Google Scholar
  29. Gräf, W. 1962a. Über Wassermyxobakterien. Archiv für Hygiene und Bakteriologie 146:114–125.Google Scholar
  30. Gräf, W. 1962b. Die zytopathogenen Eigenschaften der anaeroben Myxobakterien. Archiv für Hygiene und Bakteriologie 146:481–491.Google Scholar
  31. Gräf, W. 1962c. Die Pathogenität anaerober Myxobakterien (Sphaerocytophaga) im Tierversuch. Archiv für Hygiene und Bakteriologie 146:492–500.Google Scholar
  32. Gräf, W., Perschmann, G. 1970. Über eine neue Spezies von Vitreoscilla (Vitreoscilla proteolytica) im Bodensee. Archiv für Hygiene und Bakteriologie 154:128–137.PubMedGoogle Scholar
  33. Gross, J. 1911. Über freilebende Spironemaceen. Mitteilungen der Zoologischen Station Neapel 20:188–203.Google Scholar
  34. Güde, H. 1973. Untersuchungen über aerobe pektinzersetzende Bakterien in einem eutrophen See. Archiv für Hydrobiologie, Suppl. 42:483–496.Google Scholar
  35. Güde, H. 1980. Occurrence of cytophagas in sewage plants. Applied and Environmental Microbiology 39:756–763.PubMedGoogle Scholar
  36. Hayes, P. R. 1977. A taxonomic study of flavobacteria and related Gram-negative yellow pigmented rods. Journal of Applied Bacteriology 43:345–367.Google Scholar
  37. Heyn, A. N. J. 1957. Bacteriological studies on cotton. Textile Research Journal 27:591–603.Google Scholar
  38. Hirsch, I. 1979. Beiträge zur Taxonomie der Cytophagales. Doctor’s thesis. Technical University Braunschweig, Federal Republic of Germany.Google Scholar
  39. Holt, J. G., Lewin, R.A. 1968. Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. Journal of Bacteriology 95:2407–2408.PubMedGoogle Scholar
  40. Hsu, S. C., Lockwood, J. L. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied Microbiology 29:422–426.PubMedGoogle Scholar
  41. Hutchinson, H. B., Clayton, J. 1919. On the decomposition of cellulose by an aerobic organism (Spirochaeta cytophaga n. sp.). Journal of Agricultural Science 9:143–173.Google Scholar
  42. Imschenetski, A. A. 1959. Mikrobiologie der Cellulose. [Translated from the Russian edition of 1953.]Google Scholar
  43. Imshenetsky, A. A., Solntseva, L. 1936. On aerobic cellulose-decomposing bacteria. [In Russian, with English summary.] Izvestiia Akademii Nauk SSSR, Bulletin de l’Académie des Sciences de l’URSS, Classe des Sciences Mathématique et Naturelles, Série Biologie: 1115–1172.Google Scholar
  44. Kadota, H. 1956. A study of the marine aerobic cellulose-decomposing bacteria. Memoirs of the College of Agriculture, Kyoto University, No. 74:1–128.Google Scholar
  45. Kleinig, H., Reichenbach, H. 1977. Carotenoid glucosides and menaquinones from the gliding bacterium Herpetosiphon giganteus Hp a2. Archives of Microbiology 112: 307–310.PubMedGoogle Scholar
  46. Krzemieniewska, H. 1930. Le cycle évolutif de Spirochaeta cytophaga Hutchinson et Clayton. Acta Societatis Botanicorum Poloniae 7:507–519.Google Scholar
  47. Krzemieniewska, H. 1933. Contribution à l’étude du genre Cytophaga (Winogradsky). Archiv für Mikrobiologie 4:394–408.Google Scholar
  48. Lamont, H.C. 1969. Sacrificial cell death and trichome breakage in an oscillatorian blue-green alga: The role of murein. Archiv für Mikrobiologie 69:239–259.Google Scholar
  49. Leadbetter, E. R. 1974. Cytophagales, pp. 99–112. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  50. Leadbetter, E. R., Holt, S. C., Socransky, S.S. 1979. Capno-cytophaga: New genus of Gram-negative gliding bacteria. I. General characteristics, taxonomic considerations and significance. Archives of Microbiology 122:9–16.PubMedGoogle Scholar
  51. Lewin, R.A. 1962. Saprospira grandis Gross; and suggestions for reclassifying helical, apochlorotic, gliding organisms. Canadian Journal of Microbiology 8:555–563.Google Scholar
  52. Lewin, R. A. 1965a. Isolation and some physiological features of Saprospira thermalis. Canadian Journal of Microbiology 11:77–86.PubMedGoogle Scholar
  53. Lewin, R. A. 1965b. Freshwater species of Saprospira. Canadian Journal of Microbiology 11:135–139.PubMedGoogle Scholar
  54. Lewin, R. A. 1969. A classification of flexibacteria. Journal of General Microbiology 58:189–206.PubMedGoogle Scholar
  55. Lewin, R. A. 1970a. New Herpetosiphon species (Flexibacterales). Canadian Journal of Microbiology 16:517–520.PubMedGoogle Scholar
  56. Lewin, R.A. 1970b. Flexithrix dorotheae gen. et sp. nov. (Flexibacterales); and suggestions for reclassifying sheathed bacteria. Canadian Journal of Microbiology 16:511–515.Google Scholar
  57. Lewin, R. A. 1972. Growth and nutrition of Saprospira grandis Gross (Flexibacterales). Canadian Journal of Microbiology 18:361–365.PubMedGoogle Scholar
  58. Lewin, R. A., Kiethe, J. 1965. Formation of rhapidosomes in Saprospira. Canadian Journal of Microbiology 11:935–938.PubMedGoogle Scholar
  59. Lewin, R. A., Leadbetter, E. R. 1974. Herpetosiphon, pp. 107–109; Saprospira, pp. 109–111. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  60. Lewin, R. A., Lounsbery, D. M. 1969. Isolation, cultivation and characterization of flexibacteria. Journal of General Microbiology 58:145–170.PubMedGoogle Scholar
  61. Lewin, R. A., Mandel, M. 1970. Saprospira toviformis nov. sp. (Flexibacterales) from a New Zealand seashore. Canadian Journal of Microbiology 16:507–510.PubMedGoogle Scholar
  62. Mandel, M., Leadbetter, E. R. 1965. Deoxyribonucleic acid base composition of myxobacteria. Journal of Bacteriology 90:1795–1796.PubMedGoogle Scholar
  63. Mandel, M., Lewin, R. A. 1969. Deoxyribonucleic acid base composition of flexibacteria. Journal of General Microbiology 58:171–178.PubMedGoogle Scholar
  64. Mayer, H., Reichenbach, H. 1978. Restriction endonucleases: General survey procedure and survey of gliding bacteria. Journal of Bacteriology 136:708–713.PubMedGoogle Scholar
  65. Newman, M. G., Socransky, S. S., Savitt, E. D., Propas, D. A., Crawford, A. 1976. Studies of the microbiology of periodontosis. Journal of Periodontology 47:373–379.PubMedGoogle Scholar
  66. Owen, R. J., Snell, J. J. S. 1976. Deoxyribonucleic acid reassociation in the classification of flavobacteria. Journal of General Microbiology 93:89–102.PubMedGoogle Scholar
  67. Pacha, R. E., Ordal, E. J. 1967. Histopathology of experimental columnaris disease in young salmon. Journal of ComChapautive Pathology 77:419–423.Google Scholar
  68. Pate, J. L., Johnson, J. L., Ordal, E. J. 1967. The fine structure of Chondrococcus columnaris. II. Structure and formation of rhapidosomes. Journal of Cell Biology 35:15–35.PubMedGoogle Scholar
  69. Peterson, E. A., Gillespie, D. C., Cook, F. D. 1966. A wide-spectrum antibiotic produced by a species of Sorangium. Canadian Journal of Microbiology 12:221–230.PubMedGoogle Scholar
  70. Pringsheim, E. G. 1951. The Vitreoscillaceae: A family of colourless, gliding, filamentous organisms. Journal of General Microbiology 5:124–149.PubMedGoogle Scholar
  71. Reichardt, W. 1974. Ecophysiology of some aquatic bacteria from the Flavobacterium-Cytophaga group. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Reihe A 227:85–93.Google Scholar
  72. Reichenbach, H. 1967. Die wahre Natur der Myxobakterien— “Rhapidosomen”. Archiv für Mikrobiologie 56:371–383.PubMedGoogle Scholar
  73. Reichenbach, H., Beyer, P., Kleinig, H. 1978. The pigments of the gliding bacterium Herpetosiphon giganteus. FEMS Microbiology Letters 3:155–156.Google Scholar
  74. Reichenbach, H., Galle, H. K., Heunert, H. H. 1975/1976a. Herpetosiphon giganteus (Leucotrichales). Wachstum und Bewegung. Encyclopaedia Cinematographica E 2420, film of the Institut für den wissenschaftlichen Film, Göttingen, Federal Republic of Germany.Google Scholar
  75. Reichenbach, H., Galle, H. K., Heunert, H. H. 1975/1976b. Saprospira grandis (Leucotrichales). Wachstum und Bewegung. Encyclopaedia Cinematographica E 2424, film of the Institut für den wissenschaftlichen Film, Göttingen, Federal Republic of Germany.Google Scholar
  76. Reichenbach, H., Golecki, J. R. 1975. The fine structure of Herpetosiphon, and a note on the taxonomy of the genus. Archives of Microbiology 102:281–291.PubMedGoogle Scholar
  77. Reichenbach, H., Kleinig, H., Achenbach, H. 1974. The pigments of Flexibacter elegans: Novel and chemosystematically useful compounds. Archives of Microbiology 101:131–144.Google Scholar
  78. Reichenbach, H., Kohl, W., Böttger-Vetter, A., Achenbach, H. 1980. Flexirubin-type pigments in Flavobacterium. Archives of Microbiology 126:291–293.Google Scholar
  79. Rucker, R. R., Earp, B. J., Ordal, E. J. 1953. Infectious diseases of Pacific salmon. Transactions of the American Fisheries Society 83:297–312.Google Scholar
  80. Ruschke, R., Rath, M. 1966. Sporocytophaga cauliformis Knorr und Gräf, eine Myxobakterienart mit großer Bedeutung für den Abbau organischen Materials. Archiv für Hydrobiologie, Suppl. 28:377–402.Google Scholar
  81. Sanfilippo, A., Lewin, R. A. 1970. Preservation of viable flexibacteria at low temperatures. Canadian Journal of Microbiology 16:441–444.PubMedGoogle Scholar
  82. Sijpesteijn, A. K., Fåhraeus, G. 1949. Adaptation of Sporocytophaga myxococcoides to sugars. Journal of General Microbiology 3:224–235.PubMedGoogle Scholar
  83. Skerman, V. B. D., Quinn, G. R., Sly, L. I., Hardy, J. V. 1977. Sheath formation by strains of Herpetosiphon species. International Journal of Systematic Bacteriology 27:274–278.Google Scholar
  84. Snieszko, S. F., Bullock, G. L. 1976. Columnaris disease of fishes. Fish Disease Leaflet 45. Washington, D.C.: U.S. Department of the Interior, Fish and Wildlife Service.Google Scholar
  85. Soriano, S. 1945. Elnuevo orden Flexibacteriales y la clasificación de los órdenes de las bacterias. Revista Argentina de Agronomia 12:120–140.Google Scholar
  86. Stanier, R. Y. 1941. Studies on marine agar-digesting bacteria. Journal of Bacteriology 42:527–558.PubMedGoogle Scholar
  87. Stanier, R. Y. 1942. The Cytophaga group: A contribution to the biology of myxobacteria. Bacteriological Reviews 6:143–196.PubMedGoogle Scholar
  88. Stanier, R. Y. 1947. Studies on nonfruiting myxobacteria. I. Cytophaga jonsonae n. sp., a chitin-decomposing myxobac-terium. Journal of Bacteriology 53:297–315.Google Scholar
  89. Stapp, C., Bortels, H. 1934. Mikrobiologische Untersuchungen über die Zersetzung von Waldstreu, Zentralblatt für Bakteriologie, Abt. 2 90:28–66.Google Scholar
  90. Strohl, W. R., Larkin, J. M. 1978. Cell division and trichome breakage in Beggiatoa. Current Microbiology 1:151–155.PubMedGoogle Scholar
  91. van der Meulen, H. J., Harder, W., Veldkamp, H. 1974. Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie van Leeuwenhoek Journal of Microbiology and Serology 40:329–346.Google Scholar
  92. van Tieghem, P. 1880. Observations sur des Bacteriacées vertes, sur des Phycochromacées blanches, et sur les affinités de ces deux familles. Bulletin de la Société Botanique de France 27:174–179.Google Scholar
  93. Veldkamp, H. 1955. A study of the aerobic decomposition of chitin by microorganisms. Mededelingen van de Land-bouwhogeschool te Wageningen 55:127–174.Google Scholar
  94. Veldkamp, H. 1961. A study of two marine agar-decomposing, facultatively anaerobic myxobacteria. Journal of General Microbiology 26:331–342.PubMedGoogle Scholar
  95. Veldkamp, H. 1965. Isolation of Cytophaga and Sporocytophaga. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1:81–90.Google Scholar
  96. Wakabayashi, H., Kira, K., Egusa, S. 1970a. Studies on columnaris disease of pond-cultured eels. I. Characteristics and pathogenicity of Chondrococcus columnaris isolated from pond-cultured eels. [In Japanese, with English summary.] Bulletin of the Japanese Society for Scientific Fisheries 36:147–154.Google Scholar
  97. Wakabayashi, H., Kira, K., Egusa, S. 1970b. Studies on columnaris disease of pond-cultured eels. II. The relation between gill disease and Chondrococcus columnaris. [In Japanese, with English summary.] Bulletin of the Japanese Society for Scientific Fisheries 36:678–685.Google Scholar
  98. Warming, E. 1875. Om nogle ved Danmarks Kyster levende Bakterier. Videnskabelige Meddelelser fra den naturhistoriske Forening i Kjöbenhavn for Aaret 1875:307–420.Google Scholar
  99. Weeks, O. B. 1974. Flavobacterium, pp. 357–364. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.Google Scholar
  100. Whitaker, D. R., Cook, F. D., Gillespie, D. C. 1965. Lytic enzymes of Sorangium sp. Some aspects of enzyme production in submerged culture. Canadian Journal of Biochemistry 43:1927–1933.PubMedGoogle Scholar
  101. Winogradsky, S. N. 1929. Études sur la microbiologie du sol. Sur la dégradation de la cellulose dans le sol. Annales de l’Institut Pasteur 43:549–633.Google Scholar
  102. Yamamo’to, T. 1967. Presence of rhapidosomes in various species of bacteria and their morphological characteristics. Journal of Bacteriology 94:1746–1756.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Hans Reichenbach
  • Martin Dworkin

There are no affiliations available

Personalised recommendations