Prokaryotes and their Habitats

  • Hans G. Schlegel
  • Holger W. Jannasch


Prokaryotes are well recognized as essential members of the biosphere. They inhabit all possible locations for life to exist, from those offering ideal conditions for growth and reproduction to those representing extreme environments at the borderline of abiotic conditions.


Hydrogen Sulfide Extreme Environment Environmental Microbiology Phototrophic Bacterium General Microbiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aaronson, S. 1970. Experimental microbial ecology. New York: Academic Press.Google Scholar
  2. Acher, A. J., Juven, B. J. 1977. Destruction of coliforms in water and sewage by dye-sensitized photooxidation. Applied and Environmental Microbiology 33:1019–1022.PubMedGoogle Scholar
  3. Adler, J. 1974. Chemoreception and Chemotaxis in bacteria, pp. 107–131. In: Jaenicke, L. (ed.), Biochemistry of sensory functions. Berlin: Springer-Verlag.Google Scholar
  4. Ahrens, R., Moll, G., Rheinheimer, G. 1968. Die Rolle der Fimbrien bei der eigenartigen Sternbildung von Agrobacterium luteum. Archiv für Mikrobiologie 63:321–330.PubMedGoogle Scholar
  5. Akin, D. E. 1976. Ultrastructure of rumen bacterial attachment to forage cell walls. Applied and Environmental Microbiology 31:562–568.PubMedGoogle Scholar
  6. Akin, D. E., Amos, W. E. 1975. Rumen bacterial degradation of forage cell walls investigated by electron microscopy. Applied Microbiology 29:692–701.PubMedGoogle Scholar
  7. Alexander, M. 1971. Microbial ecology. New York: John Wiley & Sons.Google Scholar
  8. Alexander, M. 1976. Natural selection and the ecology of microbial adaptation in a biosphere, pp. 3–25. In: Heinrich, M. R. (ed.), Extreme environments. Mechanisms of microbial adaptation. New York: Academic Press.Google Scholar
  9. Alexander, M. 1977. Introduction to soil microbiology, 2nd ed. New York, London, Sydney: John Wiley & Sons.Google Scholar
  10. Anwar, M., Khan, T. H., Prebble, J., Zagalski, P. F. 1977. Membrane-bound carotenoid in Micrococcus luteus protects naphthoquinone from photodynamic action. Nature 270:538–540.PubMedGoogle Scholar
  11. Aragno, M. 1978. Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiology Letters 3:13–15.Google Scholar
  12. Atlas, R. M., Bartha, R. 1980. Microbial ecology: Fundamentals and applications. Reading, Massachusetts: Addison-Wesley.Google Scholar
  13. Babenzien, H.-D. 1965. Über Vorkommen und Kultur von Nevskìa ramosa. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1: 111–116.Google Scholar
  14. Babenzien, H.-D. 1967. Zur Biologie von Nevskia ramosa. Zeitschrift für Allgemeine Mikrobiologie 7:89–96.PubMedGoogle Scholar
  15. Ballard, R. D. 1977. Notes on a major oceanographic find. Oceanus 20:35–44.Google Scholar
  16. Barber, R. T. 1968. Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220:274–275.PubMedGoogle Scholar
  17. Baross, J. A., Morita, R. Y. 1978. Microbial life at low temperatures: Ecological aspects, pp. 9–71. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.Google Scholar
  18. Bartha, R., Atlas, R. M. 1977. The microbiology of aquatic oil spills. Advances in Applied Microbiology 22:225–266.PubMedGoogle Scholar
  19. Bartnicki-Garcia, S., Nickerson, W. J. 1962. Nutrition, growth and morphogenesis of Mucor rouxii. Journal of Bacteriology 84:841–858.PubMedGoogle Scholar
  20. Bauchop, T. 1971. Mechanism of hydrogen formation in Trichomonas foetus. Journal of General Microbiology 68:27–33.PubMedGoogle Scholar
  21. Bauchop, T. 1977. Foregut fermentation, pp. 223–310. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.Google Scholar
  22. Bauld, J., Brock, T. D. 1973. Ecological studies of Chloroflexus, a gliding photosynthetic bacterium. Archiv für Mikrobiologie 92:267–284.Google Scholar
  23. Baumann, L., Baumann, P., Mandel, M., Allen, R. D. 1972.Taxonomy of aerobic marine bacteria. Journal of Bacteriology 110:402–429.PubMedGoogle Scholar
  24. Baumann, P., Baumann, L. 1977. Biology of the marine enterobacteria: Genera Beneckea and Photobacterium. Annual Review of Microbiology 31:39–61.PubMedGoogle Scholar
  25. Bavendamm, W. 1924. Die farblosen und roten Schwefelbakterien des Süss- und Salzwassers. Pflanzenforschung 2:1–156.Google Scholar
  26. Bayley, S. T., Morton, R. A. 1978. Recent developments in the molecular biology of extremely halophilic bacteria. CRC Critical Reviews in Microbiology 6:151–205.PubMedGoogle Scholar
  27. Bayley, S. T., Morton, R. A. 1979. Biochemical evolution of halobacteria, pp. 109–124. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  28. Beijerinck, M. W. 1895. Über Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 1:1–9.Google Scholar
  29. Beijerinck, M. W. 1921–1940. Verzammelde Geschritten. 1–6. Nijhoff, Den Haag.Google Scholar
  30. Benemann, J. R. 1973. Nitrogen fixation in termites. Science 181:164–165.PubMedGoogle Scholar
  31. Bennett, A. F. 1978. Activity metabolism of the lower vertebrates. Annual Review of Physiology 40:447–469.PubMedGoogle Scholar
  32. Berg, B., van Hofsten, B., Pettersson, G. 1972. Electron microscopic observations on the degradation of cellulose fibres by Cellvibrio fulvus and Sporocytophaga myxococcoides. Journal of Applied Bacteriology 35:215–219.PubMedGoogle Scholar
  33. Bergensen, F. J., Hipsley, E. H. 1970. The presence of N2-fixing bacteria in the intestine of man and animals. Journal of General Microbiology 60:61–65.Google Scholar
  34. Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, Ch., Mayer, F., Schlegel, H. G. 1976. Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29. Archives of Microbiology 108:17–26.PubMedGoogle Scholar
  35. Bezdek, H. G., Carnicci, A. F. 1972. Surface concentration of marine bacteria. Limnology and Oceanography 17:566–569.Google Scholar
  36. Bhuiya, Z. H., Walker, N. 1977. Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka. Journal of Applied Bacteriology 42:253–257.PubMedGoogle Scholar
  37. Biebl, H., Pfennig, N. 1978. Growth yield of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117:9–16.Google Scholar
  38. Blakemore, R. P. 1975. Magnetotactic bacteria. Science 190:377–379.PubMedGoogle Scholar
  39. Blakemore, R. P., Frankel, R. B., Kalmijn, A. J. 1980. South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286:384–385.Google Scholar
  40. Blakemore, R. P., Maratea, D., Wolfe, R. S. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. Journal of Bacteriology 140:720–729.PubMedGoogle Scholar
  41. Bland, J. A., Staley, J. T. 1978. Observations on the biology of Thiothrix. Archives of Microbiology 117:79–87.Google Scholar
  42. Blumershine, R. V., Savage, D. C. 1978. Filamentous microbes indigenous to the murine small bowel: A scanning electron microscopic study of their morphology and attachment to the epithelium. Microbial Ecology 4:95–103.Google Scholar
  43. Bokor, R. 1933. Die Mikrobiologie der Szik- (Salz- oder Alkali-) Böden mit besonderer Berücksichtigung ihrer Fruchtbarmachung, pp. 221–258. In: Fehér, D. (ed.), Untersuchungen über die Mikrobiologie des Waldbodens. Berlin: Springer-Verlag.Google Scholar
  44. Bousfield, I. J., MacKenzie, A. R. 1976. Inactivation of bacteria by freeze-drying. Society for Applied Bacteriology Symposium Series 5:329–344.Google Scholar
  45. Boyer, E. V., Ingle, M. B., Merver, G. D. 1973. Bacillus alcalophilus subsp. halodurans subsp. nov.: An alkaline-amylase-producing, alkalophilic organism. International Journal of Systematic Bacteriology 23:238–242.Google Scholar
  46. Boylen, C. W. 1973. Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. Journal of Bacteriology 113:33–37.PubMedGoogle Scholar
  47. Breznak, J. A., Brill, W. J., Mertins, J. W., Coppel, H. C. 1973. Nitrogen fixation in termites. Nature 244:577–579.PubMedGoogle Scholar
  48. Brierley, C. L. 1977. Thermophilic microorganisms in extraction of metals from ores, pp. 273–284. In: Underkofler, L. A. (ed.), Developments in industrial microbiology. Proceedings of the 33rd General Meeting of the Society for Industrial Microbiology, vol. 18. Washington: American Institute of Biological Sciences.Google Scholar
  49. Brierley, C. L. 1978. Bacterial leaching. CRC Critical Reviews in Microbiology 6:207–262.PubMedGoogle Scholar
  50. Brierley, C. L., Brierley, J. A. 1973. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Canadian Journal of Microbiology 19:183–188.PubMedGoogle Scholar
  51. Brierley, J. A. 1978. Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Applied and Environmental Microbiology 36:523–525.PubMedGoogle Scholar
  52. Brierley, J. A., Lockwood, S. J. 1977. The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiology Letters 2:163–165.Google Scholar
  53. Brison, J., Courtois, D., Denis, F. 1974. Microbiological study of a hypersaline lake in French Somaliland. Applied Microbiology 27:819–822.Google Scholar
  54. Brock, T. D. 1967. Life at high temperatures. Science 158:1012–1019.PubMedGoogle Scholar
  55. Brock, T. D. 1969. Microbial growth under extreme conditions. Society for General Microbiology Symposium 19:15–41.Google Scholar
  56. Brock, T. D. 1970. High temperature systems. Annual Review of Ecology and Systematics 1:191–220.Google Scholar
  57. Brock, T. D. 1978. Thermophilic microorganisms and life at high temperatures. New York, Heidelberg, Berlin: Springer-Verlag.Google Scholar
  58. Brock, T. D. 1979. Ecology of saline lakes, pp. 29–47. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  59. Brock, T. D., Boylen, K. L. 1973. Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Applied Microbiology 25:72–76.PubMedGoogle Scholar
  60. Brock, T. D., Freeze, H. 1969. Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. Journal of Bacteriology 98:289–297.PubMedGoogle Scholar
  61. Brock, T. D., Brock, M. L., Bott, T. L., Edwards, M. R. 1971. Microbial life at 90°C: The sulfur bacteria of Boulder Spring. Journal of Bacteriology 107:303–314.PubMedGoogle Scholar
  62. Brock, T. D., Brock, K. M., Belly, R. T., Weiss, R. L. 1972. Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie 84:54–68.Google Scholar
  63. Brown, A. D. 1978. Microbial water stress. Bacteriological Reviews 40:803–846.Google Scholar
  64. Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archiv für Mikrobiologie 59:20–31.PubMedGoogle Scholar
  65. Bryant, M. P., Campbell, L. L., Reddy, C. A., Crabill, M. R. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Applied and Environmental Microbiology 33: 1162–1169.PubMedGoogle Scholar
  66. Buchner, P. 1953. Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Basel: Birkhäuser Verlag.Google Scholar
  67. Buder, J. 1919. Zur Biologie des Bacteriopurpurins und der Purpurbakterien. Jahrbücher der Wissenschaftlichen Botanik 58:525–628.Google Scholar
  68. Butlin, K. R., Postgate, J. R. 1954. The microbiological formation of sulphur in Cyrenaican lakes, pp. 112–122. In: Cloudsley-Thompson, J. L. (ed.), Biology of deserts. London: Institute of Biology.Google Scholar
  69. Cagle, G. D. 1975. Fine structure and distribution of extracellular polymer surrounding selected aerobic bacteria. Canadian Journal of Microbiology 21:395–408.PubMedGoogle Scholar
  70. Cappenberg, Th. E. 1974a. Interrelations between sulfate-reduc-ing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie van Leeuwenhoek Journal of Microbiology and Serology 40:285–295.Google Scholar
  71. Cappenberg, Th. E. 1974b. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments. Antonie van Leeuwenhoek Journal of Microbiology and Serology 40:297–306.Google Scholar
  72. Castenholz, R. W. 1969. Thermophilic blue-green algae and the thermal environment. Bacteriological Reviews 33:476–504.PubMedGoogle Scholar
  73. Castenholz, R. W. 1976. The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland. Journal of Phycology 12:54–68.Google Scholar
  74. Castenholz, R. W. 1977. The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microbial Ecology 3:79–105.Google Scholar
  75. Castenholz, R. W. 1979. Evolution and ecology of thermophilic microorganisms, pp. 373–392. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  76. Chen, M., Wolin, M. J. 1977. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Applied and Environmental Microbiology 34:756–759.PubMedGoogle Scholar
  77. Chet, I., Mitchell, R. 1976. Ecological aspects of microbial chemotactic behavior. Annual Review of Microbiology 30:221–239.PubMedGoogle Scholar
  78. Chislett, M. E., Kushner, D. J. 1961. A strain of Bacillus circulans capable of growing under highly alkaline conditions. Journal of General Microbiology 24:187–190.PubMedGoogle Scholar
  79. Clark, A. E., Walsby, A. E. 1978a. The occurrence of gas-vacuolate bacteria in lakes. Archives of Microbiology 118:223–228.Google Scholar
  80. Clark, A. E., Walsby, A. E. 1978b. The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake. Archives of Microbiology 118:229–233.Google Scholar
  81. Clark, F. E. 1967. Bacteria in soil, pp. 15–49. In: Burges, A., Raw, F. (eds.), Soil biology. London: Academic Press.Google Scholar
  82. Clarke, R. T. J. 1977. The gut and its micro-organisms, pp. 35–71. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.Google Scholar
  83. Coates, M. E., Fuller, R. 1977. The gnotobiotic animal in the study of gut microbiology, pp. 311–346. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.Google Scholar
  84. Cohen, Y., Padan, E., Shilo, M. 1975. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 123:855–861.PubMedGoogle Scholar
  85. Cohen, Y., Krumbein, W. E., Goldberg, M., Shilo, M. 1977. Solar lake (Sinai). I. Physical and chemical limnology. Limnology and Oceanography 22:597–608.Google Scholar
  86. Cohen-Bazire, G., Stainer, R. Y. 1958. Inhibition of carot-enoid synthesis in photosynthetic bacteria. Nature 181: 250–252.PubMedGoogle Scholar
  87. Cohen-Bazire, G., Kunisawa, R., Pfennig, N. 1969. ComChapautive study of the structure of gas vacuoles. Journal of Bacteriology 100:1049–1061.PubMedGoogle Scholar
  88. Cohn, F. 1881. Gutachten über die Abwässer verschiedener Zuckerfabriken im Winter 1881. Quoted from Kolkwitz, 1906.Google Scholar
  89. Colmer, A. R., Temple, K. L., Hinkle, M. E. 1950. An iron-oxidizing bacterium from the drainage of some bituminous coal mines. Journal of Bacteriology 59:317–328.PubMedGoogle Scholar
  90. Costerton, J. W., Geesey, G. G., Cheng, K-J. 1978. How bacteria stick. Scientific American 238:86–95.PubMedGoogle Scholar
  91. Costerton, J. W., Ingram, J. M., Cheng, K.-J. 1974. Structure and function of the cell envelope of Gram-negative bacteria. Bacteriological Reviews 38:87–110.PubMedGoogle Scholar
  92. Cross, T. 1968. Thermophilic actinomycetes. Journal of Applied Bacteriology 31:36–53.PubMedGoogle Scholar
  93. Cundell, A. M., Sleeter, T. D., Mitchell, R. 1977. Microbial populations associated with the surface of the brown alga Ascophyllum nodosum. Microbial Ecology 4:81–91.Google Scholar
  94. Dazzo, F. B., Yanke, W. E., Brill, W. J. 1978. Trifoliin: A Rhizobium recognition protein from white clover. Biochimica et Biophysica Acta 539:276–286.PubMedGoogle Scholar
  95. De Bont, J. A. M., Mulder, E. G. 1974. Nitrogen fixation and co-oxidization of ethylene by a methane-utilizing bacterium. Journal of General Microbiology 83:113–121.Google Scholar
  96. Degens, E. T., Ross, D. A. 1974. The Black Sea: Geology, chemistry and biology. Memoir 20. Tulsa: American Association of Petroleum.Google Scholar
  97. Dehority, B. A. 1971. Carbon dioxide requirement of various species of rumen bacteria. Journal of Bacteriology 105:70–76.PubMedGoogle Scholar
  98. Demolì, R., Liebmann, H. 1952. Über die Verteilung von Sphaerotilus natans im Fluss. Schweizerische Zeitschrift für Hydrologie 14:289–297.Google Scholar
  99. De Rosa, M., Gambacorta, A., Bu’lock, J. D. 1975. Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. Journal of General Microbiology 86:156–164.PubMedGoogle Scholar
  100. Dondero, N. C. 1961. Sphaerotilus, its nature and economic significance. Advances in Applied Microbiology 3:77–107.PubMedGoogle Scholar
  101. Dondero, N. C. 1975. The Sphaerotilus-Leptothrix group. Annual Review of Microbiology 29:407–465.PubMedGoogle Scholar
  102. Drasar, B. S., Hill, M. J. 1974. Human intestinal flora. London, New York, San Francisco: Academic Press.Google Scholar
  103. Duckworth, R. B. 1975. Water relations in foods. Proceedings of an International Symposium in Glasgow, September 1974. London: Academic Press.Google Scholar
  104. Duda, V. I., Makaer’eva, D. E. 1977. Morphogenesis and function of gas caps on spores of anaerobic bacteria of the genus Clostridium. [In Russian, with English summary.] Mikrobiologiya 46:689–694.Google Scholar
  105. Dugan, P. R., MacMillan, C. B., Pfister, R. M. 1970. Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: Microscopic examination of acid streamers. Journal of Bacteriology 101:973–981.PubMedGoogle Scholar
  106. Dundas, I. D., Larsen, H. 1962. The physiological role of the carotenoid pigments of Halobacterium salinarium. Archiv für Mikrobiologie 44:233–239.Google Scholar
  107. Dundas, I. E. D. 1977. Physiology of Halobacteriaceae. Advances in Microbial Physiology 15:85–120.PubMedGoogle Scholar
  108. Ebisu, S., Kato, K., Kotani, S., Misaki, A. 1975. Structural differences in fructans elaborated by Streptococcus mutans and S. salivarius. Journal of Biochemistry 78:879–887.PubMedGoogle Scholar
  109. Ellwood, D. C., Hedger, J. N., Latham, M. H., Lynch, J. M., Slater, J. H. 1980. Contemporary microbial ecology. London, New York, Toronto, Sydney, San Francisco: Academic Press.Google Scholar
  110. Ensign, J. C., Wolfe, R. S. 1964. Nutritional control of morphogenesis in Arthrobacter crystallopoietes. Journal of Bacteriology 87:924–932.PubMedGoogle Scholar
  111. Eutick, M. L., O’Brien, R. W., Slaytor, M. 1978. Bacteria from the gut of Australian termites. Applied and Environmental Microbiology 35:823–828.PubMedGoogle Scholar
  112. Fairbairn, D. 1970. Biochemical adaptation and loss of genetic capacity in helminth Chapausites. Biological Reviews 45:29–72.PubMedGoogle Scholar
  113. Fenchel, T. M. 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem. Ophelia 6:1–182.Google Scholar
  114. Fenchel, T. M., Barker-J0rgensen, B. 1977. Detritus food chains in aquatic ecosystems: The role of bacteria. Advances in Microbial Ecology 1:1–58.Google Scholar
  115. Fenchel, T. M., Riedl, R. J. 1970. The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biology 7:255–268.Google Scholar
  116. Fenchel, T. M., Straarup, B. J. 1971. Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22:172–182.Google Scholar
  117. Ferry, J. G., Wolfe, R. S. 1976. Anaerobic degradation of benzoate to methane by a microbial consortium. Archives of Microbiology 107:33–40.PubMedGoogle Scholar
  118. Fletcher, M., Loeb, G. I. 1979. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Applied and Environmental Microbiology 37:67–72.PubMedGoogle Scholar
  119. Fliermans, C. B., Brock, T. D. 1972. Ecology of sulfur-oxidizing bacteria in hot acid soils. Journal of Bacteriology 111:343–350.PubMedGoogle Scholar
  120. Focht, D. D., Verstraete, W. 1977. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology 1:135–214.Google Scholar
  121. Foglesong, M. A., Walker, D. H., Jr., Puffer, J. S., Markovetz, A. J. 1975. Ultrastructural morphology of some prokaryotic microorganisms associated with the hindgut of cockroaches. Journal of Bacteriology 123:336–345.PubMedGoogle Scholar
  122. Foster, J. W. 1949. Chemical activities of fungi. New York: Academic Press.Google Scholar
  123. Frankel, R. B., Blakemore, R. P., Wolfe, R. S. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203: 1355–1356.PubMedGoogle Scholar
  124. Fridovich, I. 1974. Superoxide dismutases. Advances in Enzymology 41:35–97.Google Scholar
  125. Fridovich, I. 1975. Oxygen: Boon and bane. American Scientist 63:54–59.PubMedGoogle Scholar
  126. Fridovich, I. 1976. Oxygen radicals, hydrogen peroxide, and oxygen toxicity, pp. 239–277. In: Pryor, W. A. (ed.), Free radicals in biology, vol. 1. New York: Academic Press.Google Scholar
  127. Gerber, N. N. 1975. Prodigiosin-like pigments. CRC Critical Reviews in Microbiology 3:469–485.PubMedGoogle Scholar
  128. Germaine, G. R., Chludzinski, A. M., Schachtele, C. F. 1974. Streptococcus mutans dextransucrase: Requirement for primer dextran. Journal of Bacteriology 120:287–294.Google Scholar
  129. Gillespy, T. G., Thorpe, R. H. 1968. Occurrence and significance of thermophiles in canned foods. Journal of Applied Bacteriology 31:59–65.PubMedGoogle Scholar
  130. Golovacheva, R. S. 1976. Thermophilic nitrifying bacteria from hot springs. [In Russian, with English summary.] Mikro-biologiya 45:377–379.Google Scholar
  131. Golovacheva, R. S. 1979. Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals. [In Russian, with English summary.] Mikrobiologiya 48:528–533.Google Scholar
  132. Golovacheva, R. S., Karavaiko, G. I. 1978. Sulfobacillus, a new genus of thermophilic sporeforming bacteria. [In Russian, with English summary.] Mikrobiologiya 47:815–822.Google Scholar
  133. Gorini, L. 1960. Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme. Proceedings of the National Academy of Sciences of the United States of America 46:682–690.PubMedGoogle Scholar
  134. Gorlenko, W. M., Dubinina, G. A., Kuznezow, S. J. 1977. Ecology of aquatic microorganisms. [In Russian.] Moscow: Nauka.Google Scholar
  135. Goto, E., Kodama, T., Minoda, Y. 1977. Isolation and culture conditions of thermophilic hydrogen bacteria. Agricultural and Biological Chemistry 41:685–690.Google Scholar
  136. Gottlieb, S. F. 1971. Effect of hyperbaric oxygen on microorganisms. Annual Review of Microbiology 25:111–152.PubMedGoogle Scholar
  137. Grant, W. D., Mills, A. A., Schofield, A. K. 1979. An alkalo-philic species of Ectothiorhodospira from a Kenyan soda lake. Journal of General Microbiology 110:137–142.Google Scholar
  138. Greenberg, E. P., Hastings, J. W., Ulitzur, S. 1979. Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Archives of Microbiology 120:87–91.Google Scholar
  139. Griffin, D. M., Luard, E. J. 1979. Water stress and microbial ecology, pp. 49–63. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  140. Gromet-Elhanan, Z. 1977. Electron transport and photophos-phorylation in photosynthetic bacteria, pp. 637–662. In: Trebst, A., Avron, M. (eds.), Encyclopaedia of plant physiology, vol. 5. Berlin, Heidelberg: Springer-Verlag.Google Scholar
  141. Gunner, H. B., Alexander, M. 1964. Anaerobic growth of Fusarium oxysporum. Journal of Bacteriology 87: 1309–1316.PubMedGoogle Scholar
  142. Hansen, M. H., Ingvorsen, K., Barker-J0rgensen, B. 1978. Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnology and Oceanography 23:68–76.Google Scholar
  143. Harder, W., Veldkamp, H. 1968. Physiology of an obligate psychrophilic marine Pseudomonas species. Journal of Applied Bacteriology 31:12–33.Google Scholar
  144. Harder, W., Veldkamp, H. 1971. Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwenhoek Journal of Microbiology and Serology 37:51–63.Google Scholar
  145. Hardie, J. M., Bowden, G. H. 1974. The normal microbial flora of the mouth, pp. 47–83. In: Skinner, F. A., Carr, J. G. (eds.), The normal microbial flora of man. London, New York: Academic Press.Google Scholar
  146. Harold, R., Stanier, R. Y. 1955. The genera Leucothrix and Thiothrix. Bacteriological Reviews 19:49–58.PubMedGoogle Scholar
  147. Harris, R. H., Mitchell, R. 1973. The role of polymers in microbial aggregation. Annual Review of Microbiology 27:27–50.PubMedGoogle Scholar
  148. Hassan, H. M., Fridovich, I. 1979. Superoxide dismutase and its role for survival in the presence of oxygen, pp. 179–193. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  149. Hastings, J. W., Nealson, K. H. 1977. Bacterial bioluminescence. Annual Review of Microbiology 31:549–595.PubMedGoogle Scholar
  150. Heinen, W. 1974. Proceedings of the first European workshop on microbial adaptation to extreme environments. Biosystems 6:57–80.Google Scholar
  151. Held, A. A. 1970. Nutrition and fermentative energy metabolism of the water mold Aqualinderella fermentans. Mycologia 62:339–358.Google Scholar
  152. Held, A. A., Emerson, R., Fuller, M. S., Gleason, F. H. 1969. Blastocladia and Aqualinderella: Fermentative water molds with high carbon dioxide optima. Science 165:706–708.PubMedGoogle Scholar
  153. Henrici, A. T., Johnson, D. E. 1935. Studies of freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes. Journal of Bacteriology 30:61–86.PubMedGoogle Scholar
  154. Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., Stanier, R. Y. 1979. Deoxyribonucleic acid base composition of cyanobacteria. Journal of General Microbiology 111:63–71.Google Scholar
  155. Heukelekian, H., Heller, A. 1940. Relation between food concentration and surface for bacterial growth. Journal of Bacteriology 40:547–558.PubMedGoogle Scholar
  156. Heumann, W., Marx, R. 1964. Feinstruktur und Funktion der Fimbrien bei dem sternbildenden Bakterium Pseudomonas echinoides. Archiv für Mikrobiologie 47:325–337.Google Scholar
  157. Hirsch, P. 1974. Budding bacteria. Annual Review of Microbiology 28:392–444.Google Scholar
  158. Hirsch, P. 1979. Life under conditions of low nutrient concentrations, pp. 357–372. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  159. Hirsch, P., Pankratz, St. H. 1970. Study of bacterial populations in natural environments by use of submerged electron microscope grids. Zeitschrift für Allgemeine Mikrobiologie 10:589–605.PubMedGoogle Scholar
  160. Hochachka, P. W., Mustafa, T. 1972. Invertebrate facultative anaerobiosis. Science 178:1056–1060.PubMedGoogle Scholar
  161. Hochachka, P. W., Somero, G. N. 1973. Strategies of biochemical adaptation. London: W. B. Saunders.Google Scholar
  162. Hoffmann, C. 1942. Beiträge zur Vegetation des Farbstreifen-Sandwattes. Kieler Meeresforschungen 4:85–108.Google Scholar
  163. Holdemann, L. V., Cato, E. P., Moore, W. E. C. 1977. Anaerobe laboratory manual, 4th ed. Blacksburg, Virginia: Virginia Polytechnic Institute and State University.Google Scholar
  164. Hungate, R. E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriological Reviews 14:1–49.PubMedGoogle Scholar
  165. Hungate, R. E. 1962. Ecology of bacteria, pp. 95–119. In: Gunsalus, J. C., Stanier, R. Y. (eds.), The bacteria, vol. IV: The physiology of growth. New York: Academic Press.Google Scholar
  166. Hungate, R. E. 1966. The rumen and its microbes. New York, London: Academic Press.Google Scholar
  167. Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Archiv für Mikrobiologie 59:158–164.PubMedGoogle Scholar
  168. Hungate, R. E. 1975. The rumen microbial ecosystem. Annual Review of Ecology and Systematics 6:39–66.Google Scholar
  169. Hussain, H. M. 1973. Ökologische Untersuchungen über die Bedeutung thermophiler Mikroorganismen für die Selbsterhitzung von Heu. Zeitschrift für Allgemeine Mikrobiologie 13:323–334.PubMedGoogle Scholar
  170. Iannotti, E. L., Kafkewit, D., Wolin, M. J., Bryant, M. P. 1973. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: Changes caused by interspecies transfer of H2. Journal of Bacteriology 114:1231–1240.PubMedGoogle Scholar
  171. Imhoff, J. F., Trüper, H. G. 1977. Ectothiorhodospira halochloris sp. nov., a new extremely halophilic bacterium containing bacteriochlorophyll b. Archives of Microbiology 114:115–121.Google Scholar
  172. Inniss, W. E. 1975. Interaction of temperature and psychrophilic microorganisms. Annual Review of Microbiology 29:445–465.PubMedGoogle Scholar
  173. Inniss, W. E., Ingraham, J. L. 1978. Microbial life at low temperatures: Mechanisms and molecular aspects, pp. 73–104. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London: Academic Press.Google Scholar
  174. Jannasch, H. W. 1955. Zur Ökologie der zymogenen planktischen Bakterienflora natürlicher Gewässer. Archiv für Mikrobiologie 23:146–180.PubMedGoogle Scholar
  175. Jannasch, H. W. 1956. Vergleichende bakteriologische Untersuchung der Adsorptionswirkung des Nil-Trübschlammes. Berichte der Limnologischen Flussstation Freudenthal 7:21–27.Google Scholar
  176. Jannasch, H. W. 1957. Die bakterielle Rotfarbung der Salzseen des Wadi Natrun (Ägypten). Archiv für Hydrobiologie 53: 425–433.Google Scholar
  177. Jannasch, H. W. 1958. Studies of planktonic bacteria by means of a direct membrane filter method. Journal of General Microbiology 18:609–620.PubMedGoogle Scholar
  178. Jannasch, H. W. 1960. Versuche über Denitrifikation und die Verfügbarkeit des Sauerstoffes in Wasser und Schlamm. Archiv für Hydrobiologie 56:355–369.Google Scholar
  179. Jannasch, H. W. 1967. Enrichment of aquatic bacteria in continuous culture. Archiv für Mikrobiologie 59:165–173.PubMedGoogle Scholar
  180. Jannasch, H. W. 1977. Growth kinetics of aquatic bacteria. Society for Applied Bacteriology Symposium Series 6:55–68.Google Scholar
  181. Jannasch, H. W. 1978. Microorganisms and their aquatic habitat, pp. 17–24. In: Krumbein, W. E. (ed.), Environmental bio-geochemistry and geomicrobiology, vol. 1. Ann Arbor, Michigan: Ann Arbor Scientific Publications.Google Scholar
  182. Jannasch, H. W. 1979. Microbial ecology of aquatic low-nutrient habitats, pp. 243–260. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  183. Jannasch, H. W., Mateles, R. I. 1974. Experimental bacterial ecology studies in continuous culture. Advances in Microbial Physiology 11:165–212.Google Scholar
  184. Jannasch, H. W., Pritchard, P. H. 1972. The role of inert particulate matter in the activity of aquatic microorganisms. In: Melchiorri-Santolinie, U., Hopton, J. W. (eds.), Detritus and its role in aquatic ecosystems. Memorie dell’Istituto Italiano di Idrobiologia Dott Marco de Marchi Pallanza Italy Suppl. 29:289–308.Google Scholar
  185. Jannasch, H. W., Triiper, H. G., Tuttlet, J. H. 1974. The microbial sulfur cycle in the Black Sea, pp. 419–425. In: Dergens, E. T., Ross, D. A. (eds.), The Black Sea: Its geology, chemistry and biology, Memoir 20. Tulsa: American Association of Petroleum.Google Scholar
  186. Jannasch, H. W., Wirsen, C. O. 1973. Deep-sea microorganisms: In situ response to nutrient enrichment. Science 180:641–643.PubMedGoogle Scholar
  187. Jannasch, H. W., Wirsen, C. O. 1977. Retrieval of concentrated and undecompressed microbial populations from the deep sea. Applied and Environmental Microbiology 33:642–646.PubMedGoogle Scholar
  188. Jannasch, H. W., Wirsen, C.O. 1979. Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience 29:592–598.Google Scholar
  189. Jannasch, H. W., Wirsen, C. O., Taylor, C. D. 1976. Undecom-pressed microbial populations from the deep sea. Applied and Environmental Microbiology 32:360–367.PubMedGoogle Scholar
  190. Jones, O. T. G. 1977. Electron transport and ATP synthesis in the photosynthetic bacteria, pp. 151–183. In: Haddock, B. A., Hamilton, W., A. (eds.), Microbial energetics. Cambridge, London, New York: Cambridge University Press.Google Scholar
  191. Kato, G., Maruyama, Y., Nakamura, M. 1979. Role of lectins and lipopolysaccharides in the recognition process of specific legume-Rhizobium symbiosis. Agricultural and Biological Chemistry 43:1085–1092.Google Scholar
  192. Kelly, M. T., Brock, T. D. 1969. Physiological ecology of Leucothrix mucor. Journal of General Microbiology 59:153–162.PubMedGoogle Scholar
  193. Kluyver, A. J., Donker, H. J. L. 1925. The unity in the chemistry of the fermentative sugar dissimilation processes of microbes. Proceedings of the Royal Academy of Amsterdam 28:297–313.Google Scholar
  194. Kluyver, A. J., Donker, H. J. L. 1926. Die Einheit in der Biochemie. Chemie der Zelle und Gewebe 13:134–190.Google Scholar
  195. Koch, A. L. 1979. Microbial growth in low concentrations of nutrients, pp. 261–279. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  196. Kolkwitz, R. 1904–1906. Mykologie und Reinigung der städtischen und der Zuckerfabriksabwässer, p. 391. In: Lafar, F. (ed.), Handbuch der technischen Mykologie, vol. III. Jena: Gustav Fischer Verlag.Google Scholar
  197. Korhonen, T. K., Nurmiaho, E.-L., Tuovinen, O. H. 1978. Fimbriation in Thiobacillus A2. FEMS Microbiology Letters 3:195–198.Google Scholar
  198. Koshland, D. E., Jr. 1974. The chemotactic response in bacteria, pp. 133–160. In: Jaenicke, L. (ed.), Biochemistry of sensory functions. Berlin: Springer-Verlag.Google Scholar
  199. Koshland, D. E., Jr. 1976. Bacterial Chemotaxis as a simple model for a sensory system. Trends in Biochemical Sciences 1:1–3.Google Scholar
  200. Krinsky, N. I. 1979. Carotenoid pigments: Multiple mechanisms for coping with the stress of photosensitized oxidations, pp. 163–177. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  201. Krul, J. M., Hirsch, P., Staley, J. T. 1970. Toxothrix trichogenes (Chol.) Beger et Bringmann: The organism and its biology. Antonie van Leeuwenhoek Journal of Microbiology and Serology 36:409–420.Google Scholar
  202. Kuenen, J. G., Boonstra, H. G., Schröder, J., Veldkamp, H. 1977. Competition for inorganic substrates among chemo-organotrophic and chemolithotrophic bacteria. Microbial Ecology 3:119–130.Google Scholar
  203. Kushner, D. J. 1971. Life in extreme environments, pp. 485–491. In: Buvet, R., Ponnamperuma, C. (eds.), Chemical evolution and origin of life. Amsterdam: North-Holland.Google Scholar
  204. Kushner, D. J. 1978. Life in high salt and solute concentrations: Halophilic bacteria, pp. 317–368. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.Google Scholar
  205. Kuznezow, S. I. 1959. Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  206. Kuznezow, S. I. 1977. Trends in the development of ecological microbiology, pp. 1–48. In: Droop, M. R., Jannasch, H. W. (eds.), Advances in aquatic microbiology. London, New York, San Francisco: Academic Press.Google Scholar
  207. Landau, J. V., Pope, D. H. 1980. Recent advances in the area of barotolerant protein synthesis in bacteria and implications concerning barotolerant and barophilic growth. Advances in Aquatic Microbiology 2:49–76.Google Scholar
  208. Langworthy, T. A. 1978. Microbial life in extreme pH values, pp. 279–315. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.Google Scholar
  209. Lanyi, J. K. 1979. Physical-chemical aspects of salt-dependence in Halobacteria, pp. 93–107. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  210. Lapage, S. P., Shelton, J. E., Mitchell, T. G., MacKenzie, A. R. 1970. Culture collections and the preservation of bacteria, pp. 135–228. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 3A. London, New York: Academic Press.Google Scholar
  211. la Rivière, J. W. M. 1963. Cultivation and properties of Thiovulum majus Hinze, pp. 61–72. In: Oppenheimer, C. H. (ed.), Marine microbiology. Springfield, Illinois: Charles C. Thomas.Google Scholar
  212. la Rivière, J. W. M. 1965. Enrichment of colorless sulfur bacteria. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1:17–27.Google Scholar
  213. Larsen, H. 1967. Biochemical aspects of extreme halophilism. Advances in Microbial Physiology 1:97–132.Google Scholar
  214. Larsen, H. 1971. Halophilism, microbial. In: McGraw-Hill encyclopedia of science and technology, 3rd ed. New York: McGraw-Hill.Google Scholar
  215. Larsen, H. 1973. The halobacteria’s confusion to biology. The fourth A. J. Kluyver memorial lecture delivered before the Netherlands Society for Microbiology, April 1972 at the Delft University of Technology. Antonie van Leeuwenhoek Journal of Microbiology and Serology 39:383–396.Google Scholar
  216. Latham, M. J., Wolin, M. J. 1977. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Applied and Environmental Microbiology 34:297–301.PubMedGoogle Scholar
  217. Latham, M. J., Brooker, B. E., Pettipher, G. L., Harris, P. J. 1978. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Applied and Environmental Microbiology 35:156–165.Google Scholar
  218. Leathen, W. W., Braley, S. A., Sr., McIntyre, L. D. 1953. The role of bacteria in the formation of acid from certain sulfuritic constituents associated with bituminous coal. H. Ferrous iron oxidizing bacteria. Applied Microbiology 1:65–68.PubMedGoogle Scholar
  219. Lee, A., Phillips, M. 1978. Isolation and cultivation of spirochetes and other spiral-shaped bacteria associated with the cecal mucosa of rats and mice. Applied and Environmental Microbiology 35:610–613.PubMedGoogle Scholar
  220. Leifson, E. 1962. The bacterial flora of distilled and stored water. I. General observations, techniques and ecology. International Bulletin of Bacteriological Nomenclature and Taxonomy 12:133–153.Google Scholar
  221. Le Roux, N. W., Wakerley, D. S., Hunt, S. D. 1977. Thermophilic Thiobacillus-type bacteria from Icelandic thermal areas. Journal of General Microbiology 100:197–201.Google Scholar
  222. Liener, I. E. 1976. Phytohemagglutinins (phytolectins). Annual Review of Plant Physiology 27:291–319.Google Scholar
  223. Loesche, W. J. 1969. Oxygen sensitivity of various anaerobic bacteria. Applied Microbiology 18:723–727.PubMedGoogle Scholar
  224. McBee, R. H. 1977. Fermentation in the hindgut, pp. 185–222. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.Google Scholar
  225. McLeod, R. A. 1968. On the role of inorganic ions in the physiology of marine bacteria. Advances in the Microbiology of the Sea 1:95.Google Scholar
  226. Madigan, M. T., Brock, T. D. 1977. Adaptation by hot springs phototrophs to reduced light intensities. Archives of Microbiology 113:111–120.PubMedGoogle Scholar
  227. Mandel, M., Leadbetter, E. R., Pfennig, N., Trüper, H. G. 1971. Deoxyribonucleic acid base compositions of photo-trophic bacteria. International Journal of Systematic Bacteriology 21:222–230.Google Scholar
  228. Marchlewitz, B., Schwartz, W. 1961. Untersuchungen über die Mikroben-Assoziation saurer Grubenwässer. Zeitschrift für Allgemeine Mikrobiologie 1:100–114.Google Scholar
  229. Marples, M. J. 1965. The ecology of the human skin. Springfield, Illinois: Charles C. Thomas.Google Scholar
  230. Marples, M. J. 1974. The normal microbial flora of the skin, pp. 7–12. In: Skinner, F. A., Carr, J. G. (eds.), The normal microbial flora of man. London, New York: Academic Press.Google Scholar
  231. Marples, M. J. 1976. Life on the human skin. Scientific American 220:108–115.Google Scholar
  232. Marquis, R. E. 1976. High-pressure microbial physiology, pp. 159–241. In: Rose, A. H., Tempest, D. W. (eds.), Advances in microbial physiology, vol. 14. London: Academic Press.Google Scholar
  233. Marquis, R. E., Matsumara, P. 1978. Microbial life under pressure, pp. 105–158. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London: Academic Press.Google Scholar
  234. Marshall, K. C. 1976. Interfaces in microbial ecology. Cambridge, London: Harvard University Press.Google Scholar
  235. Marshall, K. C. 1979. Growth at interfaces, pp. 281–290. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  236. Martin, H. H. 1969. Die Struktur der Zellwand bei Gramnegativen Bakterien. Arzneimittel-Forschung 19:266–272.PubMedGoogle Scholar
  237. Martin, S. M. 1964. Conservation of microorganisms. Annual Review of Microbiology 18:1–16.PubMedGoogle Scholar
  238. Marx, J. L. 1977. Looking at lectins: Do they function in recognition processes? Science 196:1429–1430.PubMedGoogle Scholar
  239. Marx, R., Heumann, W. 1962. Uber Geisseifeinstrukturen und Fimbrien bei zwei Pseudomonas -Stämmen. Archiv für Mikrobiologie 43:245–254.PubMedGoogle Scholar
  240. Matin, A. 1979. Microbial regulatory mechanisms at low nutrient concentrations as studies in chemostat, pp. 323–339. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  241. Matin, A., Veldkamp, H. 1978. Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment. Journal of General Microbiology 105:187–197.PubMedGoogle Scholar
  242. Matin, A., Veldhuis, C., Stegemann, V., Veenhuis, M. 1979. Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. Journal of General Microbiology 112:349–355.PubMedGoogle Scholar
  243. Matsumara, P., Marquis, R. E. 1977. Energetics of streptococcal growth inhibition by hydrostatic pressure. Applied and Environmental Microbiology 33:885–892.Google Scholar
  244. Matthews, M. M., Sistrom, W. R. 1959. Function of carotenoid pigments in non-photo synthetic bacteria. Nature 184:1892–1893.Google Scholar
  245. Mayer, F. 1971. Elektronenmikroskopische Untersuchung der Fimbrienkontraktion bei dem sternbildenden Bodenbakte-rium Pseudomonas echinoides. Archiv für Mikrobiologie 76:166–173.PubMedGoogle Scholar
  246. Mayer, F., Schmitt, R. 1971. Elektronenmikroskopische, diffraktometrische und disc-elektrophoretische Untersuchungen an Fimbrien des sternbildenden Bodenbakteriums Pseudomonas echinoides und einer nicht-sternbildenden Mutante. Archiv für Mikrobiologie 79:311–326.PubMedGoogle Scholar
  247. Mazanec, K., Kocur, M., Martinec, T. 1965. Electron microscopy of ultrathin sections of Sporosarcina ureae. Journal of Bacteriology 90:808–816.PubMedGoogle Scholar
  248. Meers, J. L. 1973. Growth of bacteria in mixed cultures. CRC Critical Reviews in Microbiology 2:139–184.Google Scholar
  249. Menzel, D. W., Ryther, J. H. 1970. Distribution and cycling of organic matter in the oceans. In: Hood, D. W. (ed.), Organic matter in natural waters. Alaska: Institute of Marine Sciences.Google Scholar
  250. Millar, W. N. 1973. Heterotrophic bacterial population in acid coal mine water: Flavobacterium acidurans, sp. n. International Journal of Systematic Bacteriology 23:142–150.Google Scholar
  251. Miller, R. E., Simons, L. A. 1962. Survival of bacteria after twenty-one years in the dried state. Journal of Bacteriology 84:1111–1114.PubMedGoogle Scholar
  252. Miller, W. D. 1890. The micro-organisms of the human mouth, Philadelphia 1890 [unaltered reprint from original work]. Basel, Munich, Paris, London, New York, Sydney: Karger.Google Scholar
  253. Minato, H., Suto, T. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. Journal of General and Applied Microbiology 24:1–16.Google Scholar
  254. Mitskevich, I. N. 1979. The total number of biomass of microorganisms in deep waters of the Black Sea. [In Russian, with English summary.] Mikrobiologiya 48:552–557.Google Scholar
  255. Moore, W. E. C., Holdeman, L. V. 1974. Human fecal flora: The normal flora of 20 Japanese-Hawaiians. Applied Microbiology 27:961–979.PubMedGoogle Scholar
  256. Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriological Reviews 39:144–167.PubMedGoogle Scholar
  257. Morita, R. Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, pp. 279–298. In: Gray, T. G. R., Postgate, J. R. (eds.), The survival of vegetative microbes. Cambridge: Cambridge University Press.Google Scholar
  258. Morris, J. G. 1975. The physiology of obligate anaerobiosis. Advances in Microbial Physiology 12:169–246.Google Scholar
  259. Morris, J. G. 1976. Fifth Stenhouse-Williams Memorial Lecture—oxygen and the obligate anaerobe. Journal of Applied Bacteriology 40:229–244.PubMedGoogle Scholar
  260. Morris, J. G. 1978. The biochemistry of anaerobiosis. Biochemical Society Transactions 6:353–356.PubMedGoogle Scholar
  261. Morris, J. G. 1979. Nature of oxygen toxicity in anaerobic microorganisms, pp. 149–162. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  262. Morris, J. G., O’Brien, R. W. 1971. Oxygen and Clostridia: A review, pp. 1–37. In: Barker, A. N., Gould, G. W., Wolf, J. (eds.), Spore research 1971. London: Academic Press.Google Scholar
  263. Mossel, D. A. A. 1975. Water and micro-organisms in foods—a synthesis, pp. 347–361. In: Duckworth, R. B. (ed.), Water relations of foods. London: Academic Press.Google Scholar
  264. Mossel, D. A. A., Ingram, M. 1955. The physiology of the microbial spoilage of foods. Journal of Applied Bacteriology 18:232–268.Google Scholar
  265. Müller, M. 1975. Biochemistry of protozoan microbodies: Peroxisomes, glycerophosphate oxidase bodies, hydrogenosomes. Annual Review of Microbiology 29:467–483.PubMedGoogle Scholar
  266. Müller-Neuglück, M., Engel, H. 1961. Photoinaktivierung von Nitrobacter winogradskyi Buch. Archiv für Mikrobiologie 39:130–138.Google Scholar
  267. Mulder, E. G., Brotonegoro, S. 1974. Free-living heterotrophic nitrogen-fixing bacteria, pp. 37–85. In: Quispel, A. (ed.), The biology of nitrogen fixation. Amsterdam: North-Holland.Google Scholar
  268. Nasim, A., James, A. P. 1978. Life under conditions of high irradiation, pp. 409–439. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.Google Scholar
  269. Neijssel, O. M., Hueting, S., Crabbendam, K. J., Tempest, D. W. 1975. Dual pathways of glycerol assimilation in Klebsiella aerogene s NCIB 418. Their regulation and possible functional significance. Archives of Microbiology 104:83–87.PubMedGoogle Scholar
  270. Noble, W. C., Pitcher, D. G. 1979. Microbial ecology of the human skin. Advances in Microbial Ecology 2:245–289.Google Scholar
  271. Noble, W. C., Somerville, D. A. 1974. Microbiology of human skin. London, Philadelphia, Toronto: W. B. Saunders.Google Scholar
  272. Nottingham, P. M., Hungate, R. E. 1969. Methanogenic fermentation of benzoate. Journal of Bacteriology 98:1170–1172.PubMedGoogle Scholar
  273. Nultsch, W. 1975. Phototaxis and photokinesis, pp. 29–90. In: Carlile, M. J. (ed.), Primitive sensory and communication systems: The taxes and tropisms of microorganisms and cells. London: Academic Press.Google Scholar
  274. O’Brien, R. W., Morris, J. G. 1971. Oxygen and the growth and metabolism of Clostridium acetobutylicum. Journal of General Microbiology 68:307–318.PubMedGoogle Scholar
  275. Odum, E. P. 1977. Ecology: The link between the natural and the social sciences, 2nd ed. London, New York, Sydney, Toronto: Holt, Rinehart & Winston.Google Scholar
  276. Ohta, K., Kiyomiya, A., Koyama, N., Nosoh, Y. 1975. The basis of the alkalophilic property of a species of bacillus. Journal of General Microbiology 86:259–266.Google Scholar
  277. Okon, Y., Albrecht, S. L., Bums, R. H. 1976. Factors affecting growth and nitrogen fixation of Spirillum lipoferum. Journal of Bacteriology 127:1248–1254.PubMedGoogle Scholar
  278. Oren, A., Padan, E. 1978. Induction of anaerobic, photoauto-trophic growth in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 133:558–563.PubMedGoogle Scholar
  279. Oren, A., Shilo, M. 1979. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation. Archives of Microbiology 122:77–84.Google Scholar
  280. Orpin, C. G. 1972. The culture in vitro of the rumen bacterium Quin’s oval. Journal of General Microbiology 73:523–530.PubMedGoogle Scholar
  281. Orpin, C. G. 1973. The intracellular polysaccharide of the rumen bacterium Eadie’s oval. Archiv für Mikrobiologie 90:247–254.PubMedGoogle Scholar
  282. Ottow, J. C. G. 1975. Ecology, physiology, and genetics of fimbriae and pili. Annual Review of Microbiology 29:79–108.PubMedGoogle Scholar
  283. Overbeck, J. 1972. Zur Struktur und Funktion des aquatischen Ökosystems. Berichte der Deutschen Botanischen Gesellschaft 85:553–579.Google Scholar
  284. Padan, E. 1979a. Facultative anoxygenic photosynthesis in cyanobacteria. Annual Review of Plant Physiology 30:27–40.Google Scholar
  285. Padan, E. 1979b. Impact of facultatively anaerobic photoauto-trophic metabolism on ecology of cyanobacteria (blue-green algae). Advances in Microbial Ecology 3:1–48.Google Scholar
  286. Pask-Hughes, R. A., Williams, R. A. D. 1975. Extremely thermophilic Gram-negative bacteria from hot tap water. Journal of General Microbiology 88:321–328.PubMedGoogle Scholar
  287. Pask-Hughes, R. A., Williams, R. A. D. 1977. Yellow-pigmented strains of Thermus spp. from Icelandic hot springs. Journal of General Microbiology 102:375–383.Google Scholar
  288. Patterson, H., Irvin, R., Costerton, J. W., Cheng, K.-J. 1975. Ultrastructure and adhesion properties of Ruminococcus albus. Journal of Bacteriology 122:278–287.PubMedGoogle Scholar
  289. Pfennig, N. 1961. Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften 48:136.Google Scholar
  290. Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1: 179–189, 503–504.Google Scholar
  291. Pfennig, N. 1967. Photosynthetic bacteria. Annual Review of Microbiology 21:286–324.Google Scholar
  292. Pfennig, N. 1979. General physiology and ecology of photosynthetic bacteria, pp. 3–18. In: Sistrom, W. R., Clayton, R. (eds.), Photosynthetic bacteria. New York: Plenum.Google Scholar
  293. Pfennig, N., Biebl, H. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Archives of Microbiology 110:3–12.PubMedGoogle Scholar
  294. Pfennig, N., Cohen-Bazire, G. 1967. Some properties of the green bacterium Pelodictyon clathratiforme. Archiv für Mikrobiologie 59:226–236.PubMedGoogle Scholar
  295. Pierson, B. K., Castenholz, R. W. 1974. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Archives of Microbiology 100:5–24.PubMedGoogle Scholar
  296. Poindexter, J. S. 1964. Biological properties and classification of the Caulobacter group. Bacteriological Reviews 28:231–295.PubMedGoogle Scholar
  297. Poindexter, J. S. 1979. Morphological adaptation to low nutrient concentrations, pp. 341–356. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  298. Pope, D. H., Smith, W. P., Orgrinc, M. A., Landau, J. V. 1976. Protein synthesis at 680 atm.: Is it related to environmental origin, physiological type, or taxonomic group? Applied and Environmental Microbiology 31:1001–1002.PubMedGoogle Scholar
  299. Prebble, J., Huda, S. 1977. The photosensitivity of the malate oxidase system of a pigmented strain and a carotenoidless mutant of Sarcina lutea (Micrococcus luteus). Archives of Microbiology 113:39–42.PubMedGoogle Scholar
  300. Pringsheim, E. G. 1957. Observations on Leucothrix mucor and Leucothrix cohaercus nov. sp. with a survey of colorless filamentous organisms. Bacteriological Reviews 21:69–81.PubMedGoogle Scholar
  301. Prins, R. A. 1977. Biochemical activities of gut microorganisms, pp. 73–183. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.Google Scholar
  302. Raj, H. D. 1977. Leucothrix. CRC Critical Reviews in Microbiology 5:271–301.PubMedGoogle Scholar
  303. Ramaley, R. F., Hixson, J. 1970. Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. Journal of Bacteriology 103:527–528.PubMedGoogle Scholar
  304. Reddy, C. A., Bryant, M. P., Wolin, M. J. 1972a. Characteristics of S organism isolated from Methanobacillus omelianskii. Journal of Bacteriology 109:539–545.PubMedGoogle Scholar
  305. Reddy, C. A., Bryant, M. P., Wolin, M. J. 1972b. Ferredoxin-dependent conversion of acetaldehyde to acetate and H2 in extracts of S organism. Journal of Bacteriology 110:133–138.PubMedGoogle Scholar
  306. Reichelt, J. L., Baumann, P. 1973. Taxonomy of the marine, luminous bacteria. Archiv für Mikrobiologie 94:283–330.Google Scholar
  307. Richards, F. A., Vaccaro, R. F. 1958. The Cariaco Trench, an aerobic basin in the Caribbean Sea. Deep-Sea Research 3:214–228.Google Scholar
  308. Richards, F. R. 1975. The Cariaco basin (Trench). Oceanography and Marine Biology Annual Review 13:11–67.Google Scholar
  309. Rittenberg, S. C. 1979. Bdellovibrio: A model of biological interactions in nutrient impoverished environments? pp. 305–322. In: Shilo, M. (ed.), Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  310. Robinson, J. B., Salonius, P. O., Chase, F. E. 1965. A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil. Canadian Journal of Microbiology 11:746–748.PubMedGoogle Scholar
  311. Rose, A. H. 1968. Physiology of microorganisms at low temperatures. Journal of Applied Bacteriology 31:1–11.PubMedGoogle Scholar
  312. Rosebury, T. 1972. Der Reinlichkeitstick. Hamburg: Hoffmann & Campe Verlag.Google Scholar
  313. Rudd, J. W. M., Taylor, C. D. 1980. Methane cycling in aquatic environments. Advances in Aquatic Microbiology 2:77 – 150.Google Scholar
  314. Rupela, O. P., Tauro, P. 1973. Isolation and characterization of Thiobacillus from alkali soils. Soil Biology and Biochemistry 5:891–897.Google Scholar
  315. Russell, C., Melville, T. H. 1978. A review: Bacteria in the human mouth. Journal of Applied Bacteriology 44:163–181.PubMedGoogle Scholar
  316. Rutter, P. R., Abbott, A. 1978. A study of the interaction between oral streptococci and hard surfaces. Journal of General Microbiology 105:219–226.PubMedGoogle Scholar
  317. Sadoff, H. L. 1973. ComChapautive aspects of morphogenesis in three prokaryotic genera. Annual Review of Microbiology 27:133–153.PubMedGoogle Scholar
  318. Sadoff, H. L. 1975. Encystment and germination in Azotobacter vinelandii. Bacteriological Reviews 39:516–539.PubMedGoogle Scholar
  319. Savage, D. C. 1977a. Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology 31:107–133.PubMedGoogle Scholar
  320. Savage, D. C. 1977b. Interactions between the host and its microbes, pp. 277–310. In: Clarke, R. T. J., Bauchop, T. (eds.), Microbial ecology of the gut. London, New York, San Francisco: Academic Press.Google Scholar
  321. Scarr, M. P. 1968. Thermophiles in sugar. Journal of Applied Bacteriology 31:66–74.PubMedGoogle Scholar
  322. Schenk, A., Aragno, M. 1979. Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. Journal of General Microbiology 115:333–341.Google Scholar
  323. Schlegel, H. G. (ed.). 1965. Anreicherungskultur und Mutantenauslese. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Suppl. 1.Google Scholar
  324. Schlegel, H. G., Jannasch, H. W. 1967. Enrichment cultures. Annual Review of Microbiology 21:49–70.PubMedGoogle Scholar
  325. Schlegel, H. G., Pfennig, N. 1961. Die Anreicherungskultur einiger Schwefelpurpurbakterien. Archiv für Mikrobiologie 38:1–39.PubMedGoogle Scholar
  326. Schmidt, J. M. 1971. Prosthecate bacteria. Annual Review of Microbiology 25:93–110.PubMedGoogle Scholar
  327. Schmidt-Lorenz, W. 1967. Behaviour of microorganisms at low temperatures. Bulletin de l’Institut International du Froid 1–59.Google Scholar
  328. Schnaitman, C., Lundgren, D. G. 1965. Organic compounds in the spent medium of Ferrobacillus ferrooxidans. Canadian Journal of Microbiology 11:23–27.PubMedGoogle Scholar
  329. Schön, G. H., Engel, H. 1962. Der Einfluß des Lichtes auf Nitrosomonas europaea Win. Archiv für Mikrobiologie 42:415–428.Google Scholar
  330. Schroff, G., Schöttler, U. 1977. Anaerobic reduction of fu-marate in the body wall musculature of Arenicola marina (Polychaeta). Journal of ComChapautive Physiology 116: 325–336.Google Scholar
  331. Schultz, J. E., Breznak, J. A. 1978. Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Applied and Environmental Microbiology 35:930–936.PubMedGoogle Scholar
  332. Schultz, J. E., Breznak, J. A. 1979. Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts. Applied and Environmental Microbiology 37:1206–1210.PubMedGoogle Scholar
  333. Schwarz, J. A., Yayanos, A., Colwell, R. R. 1976. Metabolic activities of the intestinal microflora of a deep sea invertebrate. Applied and Environmental Microbiology 31:46–48.PubMedGoogle Scholar
  334. Schweinfurth, G., Lewin, L. 1898. Beiträge zur Topographie und Geochemie des ägyptischen Natron-thals. Zeitschrift für die Gesamte Erdkunde 33:1–25.Google Scholar
  335. Shilo, M. (ed.). 1979. Strategies of microbial life in extreme environments. Weinheim, New York: Verlag Chemie.Google Scholar
  336. Shokes, R. F., Trabant, P. K., Presley, B. J., Reid, D. F. 1977. Anoxic, hypersaline basin in the northern Gulf of Mexico. Science 196:1443–1446.PubMedGoogle Scholar
  337. Sineriz, F., Pirt, S. J. 1977. Methane production from glucose by a mixed culture of bacteria in the chemostat: The role of Citrobacter. Journal of General Microbiology 101:57–64.Google Scholar
  338. Singer, C. E., Ames, B.N. 1970. Sunlight ultraviolet and bacterial DNA base ratios. Science 170:822–826.PubMedGoogle Scholar
  339. Skopintsev, B. A., Karpov, A. V., Vershinina, O. A. 1959. Study of the dynamics of some sulfur compounds in the Black Sea under experimental conditions. Soviet Oceanography Series [English translation] 4:55–72.Google Scholar
  340. Smith, D. W. 1978. Water relations of microorganisms in nature, pp. 369–380. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.Google Scholar
  341. Sneath, P. H. A. 1962. Longevity of micro-organisms. Nature 195:643–646.PubMedGoogle Scholar
  342. Sorokin, Y. I. 1964. On the primary production and bacterial activities in the Black Sea. Journal du Conseil, Conseil International pour l’Exploration de la Mer 29:41–60.Google Scholar
  343. Sorokin, Y. I. 1970. Interrelations between sulphur and carbon turnover in meromictic lakes. Archiv für Hydrobiologie 66:391–446.Google Scholar
  344. Souza, K. A., Deal, P. H. 1977. Characterization of a novel extremely alkaline bacterium. Journal of General Microbiology 101:103–109.Google Scholar
  345. Souza, K. A., Deal, P. H., Mack, H. M., Turnbill, C. E. 1974. Growth and reproduction of microorganisms under extremely alkaline conditions. Applied Microbiology 28:1066–1068.PubMedGoogle Scholar
  346. Stanier, R. Y. 1942. The cytophaga group: A contribution to the biology of mycobacteria. Bacteriological Reviews 6:143–196.PubMedGoogle Scholar
  347. Stapp, C., Bortels, H. 1931. Der Pflanzenkrebs und sein Erreger Pseudomonas tumefaciens. II. Mitteilung: Über den Lebenskreislauf von Pseudomonas tumefaciens. Zeitschrift für Chapausitenkunde 4:101–125.Google Scholar
  348. Stapp, C., Knösel, D. 1954. Zur Genetik sternbildender Bakterien. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 2 108:244–259.Google Scholar
  349. Stockhausen, F. 1907. Ökologie, “Anhäufungen” nach Beijer-inck. Berlin: Institut für Gärungsgewerbe.Google Scholar
  350. Strange, R. E. 1976. Microbial response to mild stress. Durham, England: Meadowfield Press.Google Scholar
  351. Strength, W. J., Isani, B., Linn, D. M., Williams, F. D., Vandermolen, G. E., Laughon, B. E., Krieg, N. R. 1976. Isolation and characterization of Aquaspirillum fascilus sp. nov., a rod-shaped, nitrogen-fixing bacterium having unusual flagella. International Journal of Systematic Bacteriology 26:253–268.Google Scholar
  352. Strohl, W. R., Larkin, J. M. 1979. Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Applied and Environmental Microbiology 36:755–770.Google Scholar
  353. Sverdrup, H. W., Johnson, M. W., Fleming, R. H. 1942. The oceans. London: Prentice-Hall.Google Scholar
  354. Swart-Füchtbauer, H., Rippel-Baides, A. 1951. Die baktericide Wirkung des Sonnenlichtes. Archiv für Mikrobiologie 16:358–362.Google Scholar
  355. Tansey, M. R., Brock, T. D. 1978. Microbial life at high temperatures: Ecological aspects, pp. 159–216. In: Kushner, D. J. (ed.), Microbial life in extreme environments. London, New York, San Francisco: Academic Press.Google Scholar
  356. Tempest, D. W., Hunter, J. R. 1965. Magnesium-limited growth of Aerobacter aerogenes in a chemostat. Journal of General Microbiology 39:355–366.PubMedGoogle Scholar
  357. Tempest, D. W., Meers, J. L., Brown, C. M. 1970. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochemical Journal 117:405–407.PubMedGoogle Scholar
  358. Tempest, D. W., Meers, J. L., Brown, C. M. 1973. Glutamate synthetase (Gogat): A key enzyme in the assimilation of ammonia by prokaryotic organisms, pp. 167–182. In: Prus-iner, S., Stadtman, E. R. (eds.), The enzymes of glutamine metabolism. New York, London: Academic Press.Google Scholar
  359. Tempest, D. W., Neijssel, O. M. 1976, Microbial adaptation of low-nutrient environments, pp. 283–296. In: Dean, A. C. R., Ellwood, D. C., Evans, C. G. T., Melling, J. (eds.), Continuous culture 6: Applications and new fields. Chichester: Ellis Horwood.Google Scholar
  360. Tempest, D. W., Neijssel, O. M. 1979. Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Advances in Microbial Ecology 2:105–153.Google Scholar
  361. Thiele, H. H. 1968. Die Verwertung einfacher organischer Substrate durch Thiorhodaceae. Archiv für Mikrobiologie 60:124–138.PubMedGoogle Scholar
  362. Torma, A. E. 1977. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Advances in Biochemical Engineering 6:1–37.Google Scholar
  363. Triiper, H. G. 1969. Bacterial sulfate reduction in the Red Sea hot brines, pp. 262–271. In: Degens, E. T., Ross, D. A. (eds.), Hot brines and recent heavy metal deposits in the Red Sea. New York: Springer-Verlag.Google Scholar
  364. Trüper, H. G. 1976. Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding filamentous, phototrophic “green” bacteria. International Journal of Systematic Bacteriology 26:74–75.Google Scholar
  365. Tuovinen, O. H., Kelly, D. P. 1972. Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Zeitschrift für Allgemeine Mikrobiologie 12:311–346.PubMedGoogle Scholar
  366. Tuttle, J. H., Randles, C. I., Dugan, P. R. 1968. Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream. Journal of Bacteriology 95:1495–1503.PubMedGoogle Scholar
  367. Uesugi, I., Yajima, M. 1978. Oxygen and “strictly anaerobic” intestinal bacteria. I. Effects of dissolved oxygen on growth. Zeitschrift für Allgemeine Mikrobiologie 18:287–295.PubMedGoogle Scholar
  368. Umbreit, T. H., Pate, J. L. 1978. Characterization of the holdfast region of wild-type cells of holdfast mutants of Asticcacaulis biprosthecum. Archives of Microbiology 118:157–168.Google Scholar
  369. van Gemerden, H. 1974. Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microbial Ecology 1:104–119.Google Scholar
  370. van Niel, C. B. 1932. On the morphology and physiology of the purple and green sulphur bacteria. Archiv für Mikrobiologie 3:1–112.Google Scholar
  371. van Niel, C. B. 1936. On the metabolism of the Thiorhodaceae. Archiv für Mikrobiologie 7:323–358.Google Scholar
  372. van Niel, C. B. 1955. The microbe as a whole, pp. 3–12. In: Waksman, S. A. (ed.), Perspectives and horizons in microbiology. New Brunswick: Rutgers University Press.Google Scholar
  373. van Veen, W. L., Mulder, E. G., Deinema, M. H. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiological Reviews 42:329–356.PubMedGoogle Scholar
  374. Vedder, A. 1934. Bacillus alcalophilus sp. nov., benevens enkle ervaringen met sterk alcalische voedingsbodems. Antonie van Leeuwenhoek Journal of Microbiology and Serology 1:141–147.Google Scholar
  375. Veldkamp, H. 1970. Enrichment cultures of prokaryotic organisms, pp. 305–361. In: Norris, J. R., Ribbons, D. W. (eds.), Methods in microbiology, vol. 3A. London: Academic Press.Google Scholar
  376. Veldkamp, H. 1976. Continuous culture in microbial physiology and ecology. Patterns of progress. Durham: Meadowfield Press.Google Scholar
  377. Veldkamp, H., Jannasch, H. W. 1972. Mixed culture studies with the chemostat. Journal of Applied Chemistry and Biotechnology 22:105–123.Google Scholar
  378. Veldkamp, H., van den Berg, G., Zevenhuizen, L. P. T. M. 1963. Glutamic acid production by Arthrobacter globiformis. Antonie van Leeuwenhoek Journal of Microbiology and Serology 29:35–51.Google Scholar
  379. Voelz, H., Dworkin, M. 1962. Fine structure of Myxococcus xanthus during morphogenesis. Journal of Bacteriology 84:943–952.PubMedGoogle Scholar
  380. Völker, H., Schweisfurth, R., Hirsch, P. 1977. Morphology and ultrastructure of Crenothrix poly spora Cohn. Journal of Bacteriology 131:306–313.PubMedGoogle Scholar
  381. Walsby, A. E. 1970. The gas vesicles of aquatic prokaryotes. In: Regulations between structure and function in the prokaryotic cell. Society for General Microbiology Symposium 28:327–357. London, New York, Melbourne, Cambridge University Press.Google Scholar
  382. Walsby, A. E. 1975. Gas vesicles. Annual Review of Plant Physiology 26:427–439.Google Scholar
  383. Walsby, A. E. 1977. The gas vacuoles of blue-green algae. Scientific American 237:90–97.Google Scholar
  384. Wangersky, P. J. 1976. The surface film as a physical environment. Annual Review of Ecology and Systematics 7:161–176.Google Scholar
  385. Watson, S. W., Waterbury, J. B. 1969. The sterile hot brines of the Red Sea, pp. 272–281. In: Degens, E. T., Ross, D. A. (eds.), Hot brines and recent heavy metal deposit in the Red Sea. New York: Springer-Verlag.Google Scholar
  386. Weibull, C. 1960. Movement, pp. 153–205. In: Gunsalus, I. C., Stanier, R. Y. (eds.), The bacteria, vol. 1: Structure. New York, London: Academic Press.Google Scholar
  387. Weimer, P. J., Zeikus, J. G. 1977. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Applied and Environmental Microbiology 33:289–297.PubMedGoogle Scholar
  388. Weiss, R. L. 1973. Attachment of bacteria to sulphur in extreme environments. Journal of General Microbiology 77:501–507.Google Scholar
  389. Whittaker, R. H., Levin, S. A., Root, R. B. 1973. Niche, habitat and ecotope. American Naturalist 107:321–338.Google Scholar
  390. Whittenbury, R., Davies, S. L., Davey, J. F. 1970. Exospores and cysts formed by methane-utilizing bacteria. Journal of General Microbiology 61:219–226.PubMedGoogle Scholar
  391. Wiegel, J., Schlegel, H. G. 1976. Enrichment and isolation of nitrogen fixing hydrogen bacteria. Archives of Microbiology 107:139–142.PubMedGoogle Scholar
  392. Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R., Schlegel, H. G. 1978. Transfer of the nitrogen fixing hydrogen bacterium Corynebacterium autotrophicum (Baumgarten et al.) to Xanthobacter gen. nov. International Journal of Systematic Bacteriology 28:573–581.Google Scholar
  393. Wiley, W. R., Stokes, J. L. 1963. Effect of pH and ammonium ions on the permeability of Bacillus pasteurii. Journal of Bacteriology 86:1152–1156.PubMedGoogle Scholar
  394. Winfrey, M. R., Zeikus, J. G. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Applied and Environmental Microbiology 33:275–281.PubMedGoogle Scholar
  395. Winogradsky, S.N. 1925. Études sur la microbiologie du sol. I. Sur la méthode. Annales de l’Institut Pasteur 39:299–354.Google Scholar
  396. Winogradsky, S. N. 1926. Études sur la microbiologie du sol. Sur les microbes fixateurs d’azote. Annales de l’Institut Pasteur 40:455–520.Google Scholar
  397. Winogradsky, S. N. 1947. Principles de la Microbiologie Ecologique. Antonie van Leeuwenhoek Journal of Microbiology and Serology 12:5–15.Google Scholar
  398. Winogradsky, S. N. 1949. Microbiologie du sol. Problèmes et Méthodes. Paris: Masson et Cie.Google Scholar
  399. Wirsen, C. O., Jannasch, H. W. 1978. Physiological and morphological observations on Thiovulum sp. Journal of Bacteriology 136:765–774.PubMedGoogle Scholar
  400. Wolfe, R. S. 1960. Observations and studies of Crenothrix polyspora. Journal of the American Water Works Association 52:915–918.Google Scholar
  401. Wolin, M.J. 1976. Interactions between H2-producing and methane-producing species, pp. 141–150. In: Schlegel, H. G., Gottschalk, G., Pfennig, N. (eds.), Microbial production and utilization of gases. Göttingen: Goltze.Google Scholar
  402. Woodroffe, R. C. S., Shaw, D. A. 1974. Natural control and ecology of microbial populations on skin and hair, pp. 13–34. In: Skinner, F. A., Carr, J. G. (eds.), The normal microbial flora of man. London, New York: Academic Press.Google Scholar
  403. Yayanos, A. 1978. Recovery and maintenance of live amphipods at a pressure of 580 bars from an ocean depth of 5700 meters. Science 200:1056–1059.PubMedGoogle Scholar
  404. Zaitsev, Yu. P. 1971. Vinogradov, K. A. (ed.), Marine neustonology. Jerusalem: Keter Press.Google Scholar
  405. Zebe, E. 1977. Anaerober Stoffwechsel bei wirbellosen Tieren. Vorträge der Rheinisch-Westfälischen Akademie der Wissenschaften, N 269.Google Scholar
  406. Zeikus, J. G., Wolfe, R. S. 1972. Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. Journal of Bacteriology 109:707–713.PubMedGoogle Scholar
  407. ZoBell, C. E. 1946. Marine microbiology, a monograph on hydrobacteriology. Waltham, Massachusetts: Chronica Botanica.Google Scholar
  408. ZoBell, C. E. 1970. Pressure effects of morphology and life processes, pp. 85–130. In: Zimmermann, A. (ed.), High pressure effects on cellular processes. London: Academic Press.Google Scholar
  409. ZoBell, C. E., Morita, R. Y. 1957. Barophilic bacteria in some deep sea sediments. Journal of Bacteriology 73:563–568.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Hans G. Schlegel
  • Holger W. Jannasch

There are no affiliations available

Personalised recommendations