Skip to main content

Isolation of Members of the Families Chromatiaceae and Chlorobiaceae

  • Chapter
Book cover The Prokaryotes

Abstract

The green and purple sulfur bacteria (Chlorobiaceae and Chromatiaceae) are two physiological-ecological groups of anaerobic phototrophic bacteria with anoxygenic photosynthesis. The two groups display a competitive advantage over other microorganisms in similar aquatic habitats. The most important environmental factors are anaerobic conditions, the presence of hydrogen sulfide, and illumination. Both families are treated in one chapter because they occur under similar environmental conditions and because the strains of both families are isolated with similar methods and media. Only the genus Ecto-thiorhodospira is treated in a seChapaute chapter (this Handbook, Chapter 15) because of methodological differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Anagnostides, K., Overbeck, J. 1966. Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79:163–174.

    Google Scholar 

  • Baas Becking, L. G. M., Wood, E. J. F. 1955. Biological processes in the estuarine environment. I. II. Ecology of the sulfur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 58:160–181.

    Google Scholar 

  • Baas Becking, L. G. M., Kaplan, I. R. 1956. Biological processes in the estuarine environment. III. Electrochemical considerations regarding the sulphur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 59:85–96.

    CAS  Google Scholar 

  • Bavendamm, W. 1924. Die farblosen und roten Schwefelbakterien des Süß- und Salzwassers. Jena; Gustav Fischer Verlag.

    Google Scholar 

  • Biebl, H., Malik, K. A. 1976. Long term preservation of photo-trophic bacteria, pp. 31–33. In: Codd, G. A., Stewart, W. D. P. (eds.), Proceedings of the Second International Symposium on Photosynthetic Prokaryotes, Dundee.

    Google Scholar 

  • Biebl, H., Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117:9–16.

    Article  CAS  Google Scholar 

  • Biebl, H., Pfennig, N. 1979. CO2-fixation by anaerobic photo-trophic bacteria in lakes, a review. Ergebnisse der Limnologie, special volume of Archiv für Hydrobiologie 12:48–58.

    Google Scholar 

  • Bose, S. K. 1963. Media for anaerobic growth of photosynthetic bacteria, pp. 501–519. In: Gest, H., San Pietro, A., Vernon, L. P. (eds.), Bacterial photosynthesis. Yellow Springs, Ohio: Antioch Press.

    Google Scholar 

  • Buder, J. 1915. Zur Kenntnis des Thiospirillum jenense und seiner Reaktion auf Lichtreize. Jahrbuch für wissenschaftliche Botanik 56:529–584.

    Google Scholar 

  • Caldwell, D. E., Tiedje, J. M. 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Canadian Journal of Microbiology 21:377–385.

    Article  PubMed  CAS  Google Scholar 

  • Caumette, P. 1978. Participation des bactéries phototrophes sulfo-oxydantes dans le métabolisme du soufre en milieu lagunaire méditerranéen (Étang du Prévost). Doctoral Thesis, University of Montpellier, France.

    Google Scholar 

  • Cerniti, A. 1938. Le condizioni oceanografiche e biologiche del Mar Piccolo di Taranto durante l’agosto del 1938. Bolletino di Pesca, Piscicoltura ed Idrobiologia 14:711–751.

    Google Scholar 

  • Claus, D., Schaab-Engels, Ch. (eds.). 1977. German collection of microorganisms, catalogue of strains. Munich: Gesellschaft für Strahlen- und Umweltforschung mbH.

    Google Scholar 

  • Cohen, Y., Krumbein, W. E., Shilo, M. 1977. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnology and Oceanography 22:609–620.

    Article  CAS  Google Scholar 

  • Cohn, F. 1875. Untersuchungen über Bakterien II. Beiträge zur Biologie der Pflanzen 1:141–207.

    Google Scholar 

  • Cooper, D. E., Rands, M. B., Woo, C.-P. 1975. Sulfide reduction in fellmongery effluent by red sulfur bacteria. Journal of the Water Pollution Control Federation 47:2088–2100.

    PubMed  CAS  Google Scholar 

  • Culver, D. A., Brunskill, G. J. 1969. Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnology and Oceanography 14:862–873.

    Article  CAS  Google Scholar 

  • Cviic, V. 1955. Red water in the lake “Malo Jezero” (island of Mljet). Acta Adriatica 6:1–15.

    Google Scholar 

  • Cviié, V. 1960. Apparition d’ “eau rouge” dans le Veliko Jezero (île de Mljet). Rapports et Procès-Verbeaux des Reunions de la Commission Internationale de l’ Exploration Scientifique de la Mer Mediterranée 15:79–81.

    Google Scholar 

  • Czeczuga, B. 1968a. Primary production of the purple sulfuric bacteria Thiopedia rosea Winogr. (Thiorhodoceae). Photo-synthetica 2:161–166.

    Google Scholar 

  • Czeczuga, B. 1968b. Primary production of the green hydrosul-furic bacteria Chlorobium limicola Nads. (Chlorobacteria-ceae). Photosynthetica 2:11–15.

    Google Scholar 

  • Dickman, M., Artuz, I. 1978. Mass mortality of photosynthetic bacteria as a mechanism for dark lamina formation in sediments of the Black Sea. Nature 275:191–195.

    Article  Google Scholar 

  • Düggeli, M. 1924. Hydrobiologische Untersuchungen im Pioragebiet. Bakteriologische Untersuchungen am Ritomsee. Schweizerische Zeitschrift für Hydrologie 2:65–205.

    Article  Google Scholar 

  • Ehrenberg, Chr. G. 1838. Die Infusionsthierchen als vollkommene Organismen. Leipzig: Voss.

    Book  Google Scholar 

  • Eimhjellen, K. E. 1967. Photosynthetic bacteria and carotenoids from a sea sponge Halichondrium panicea. Acta Chemica Scandinavica 21:2280–2281.

    Article  CAS  Google Scholar 

  • Eimhjellen, K.E . 1970. Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria. Archiv für Mikrobiologie 73:193–194.

    PubMed  CAS  Google Scholar 

  • Eimhjellen, K. E., Steensland, H., Traetteberg, J. 1967. A Thiococcus sp. nov. gen., its pigments and internal membrane system. Archiv für Mikrobiologie 59:82–92.

    Article  PubMed  CAS  Google Scholar 

  • Fenchel, T. 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1–182.

    Article  Google Scholar 

  • Genovese, S. 1963. The distribution of the H2S in the lake of Faro (Messina) with particular regard to the presence of “red water”, pp. 194–204. In: Oppenheimer, C. H. (ed.), Symposium on Marine Microorganisms. Springfield, Illinois: Charles C. Thomas.

    Google Scholar 

  • Giesberger, G. 1947. Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species. Antonie van Leeuwenhoek Journal of Microbiology and Serology 13:135–148.

    Article  Google Scholar 

  • Gietzen, J. 1931. Untersuchungen über marine Thiorhodaceen. Zentralblatt für Bakteriologie, Chapausitenkunde und Infektionskrankheiten, Abt. 2 83:183–218.

    Google Scholar 

  • Gloyna, E. F. 1971. Waste stabilization ponds. World Health Organization Monograph Series No. 60. Geneva: World Health Organization.

    Google Scholar 

  • Gorlenko, V. M. 1968. Photosynthetizing sulphur bacteria from reservoirs of South Crimea. [In Russian, with English summary.] Mikrobiologiya 37:745–748.

    CAS  Google Scholar 

  • Gorlenko, V. M., Chebotarev, E. N., Kachalkin, V. I. 1973. Microbiological processes of oxidation of hydrogen sulfide in the Repnoe lake (Slavonic lakes). Microbiology [English translation of Mikrobiologiya] 42:723–728.

    CAS  Google Scholar 

  • Gorlenko, V. M., Lebedeva, E. V. 1971. New green sulphur bacteria with apophyses. [In Russian, with English summary.] Mikrobiologiya 40:1035–1039.

    CAS  Google Scholar 

  • Gorlenko, V. M., Dubinina, G. A., Kusnetsov, S. I. 1977. Ecology of aquatic microorganisms. [In Russian.] Moscow: Izdatel’stvo Nauka.

    Google Scholar 

  • Gorlenko, V. M., Vainstein, M. B., Kachalkin, V. I. 1978. Microbiological characteristic of lake Mogilnoye. Archiv für Hydrobiologie 81:475–492.

    CAS  Google Scholar 

  • Hashwa, F. A., Trüper, H. G. 1978. Viable phototrophic sulfur bacteria from the Black Sea bottom. Helgoländer Wissenschaftliche Meeresuntersuchungen 31:249–253.

    Article  Google Scholar 

  • Hatzikakidis, A. D. 1952. Periodike erythrotes ton ydaton tes limnothalasses tou Aitolikou. Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6:21–52.

    Google Scholar 

  • Hatzikakidis, A. D. 1953. Epochiakai ydrologikai ereynai eis tas limnothalassas Mesologgiou kai Aitolikou. Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6:85–143.

    Google Scholar 

  • Hauser, B., Michaelis, H. 1975. Die Makrofauna der Watten, Strände, Riffe und Wracks um den Hohen Knechtsand in der Wesermündung. Forschungsstelle für Insel- und Küstenschutz Norderney, Jahresbericht 1974, 26:85–119.

    Google Scholar 

  • Heldt, H. J. 1952. Eaux rouges. Bulletin de la Societé des Sciences Naturelles de Tunisie 5:103–106.

    Google Scholar 

  • Hof, T. 1935. Investigations concerning bacterial life in strong brines. Recueuil des Travaux Botaniques Néerlandais 32:92–173.

    Google Scholar 

  • Hoffmann, C. 1942. Beiträge zur Vegetation des Farbstreifen-Sandwattes. Kieler Meeresforschungen 4:85–108.

    Google Scholar 

  • Holm, Ff. W., Vennes, J. W. 1970. Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Applied Microbiology 19:988–996.

    PubMed  CAS  Google Scholar 

  • Imhoff, J. F. 1976. Phototrophe Bakterien salzhaltiger Standorte: Ökologische und taxonomische Aspekte. Diploma Thesis. University of Bonn.

    Google Scholar 

  • Imhoff, J. F., Hashwa, F., Trüper, H. G. 1978. Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Archiv für Hydrobiologie 84:381–388.

    Google Scholar 

  • Imhoff, J. F., Trüper, H. G. 1976. Marine sponges as habitats of anaerobic phototrophic bacteria. Microbial Ecology 3:1–9.

    Article  Google Scholar 

  • Isachenko, B. L. 1914. Studies of bacteria of the Arctic Ocean. Cited in: Gorlenko, Vainstein, and Kachalkin, 1978.

    Google Scholar 

  • Jannasch, H. W. 1957. Die bakterielle Rotfärbung der Salzseen des Wadi Natrun. Archiv für Hydrobiologie 53:425–433.

    Google Scholar 

  • Jannasch, H. W., Trüper, H. G., Tuttle, J. H. 1974. Microbial sulfur cycle in Black Sea, pp. 419–425. In: Degens, E. T., Ross, D. A., (eds.), The Black Sea—geology, chemistry and biology. Tulsa, Oklahoma: American Association of Petroleum Geologists (Memoir 20).

    Google Scholar 

  • Kaiser, P. 1966. Contribution a l’étude de l’écologie des bactéries photosynthétiques. Annales de l’Institut Pasteur 111: 733–749.

    PubMed  CAS  Google Scholar 

  • Kolkwitz, R. 1909. Schizomycetes. Kryptogamenflora der Mark Brandenburg, vol. 5:1–186. Leipzig: Verlag von Gebrüder Borntraeger.

    Google Scholar 

  • Kondratieva, E. N. 1965. Photosynthetic bacteria. Jerusalem: Israel: Program for Scientific Translations.

    Google Scholar 

  • Kriss, A. E., Rukina, E. A. 1953. Purple sulfur bacteria in deep sulfurous water of the Black Sea. [In Russian.] Doklady Akademii Nauk SSSR 93:1107–1110.

    PubMed  CAS  Google Scholar 

  • Kützing, Fr. T. 1883. Beiträge zur Kenntnis über die Entstehung und Metamorphose der niederen vegetabilischen Organismen, nebst einer systematischen Zusammenstellung der hierher gehörigen niedern Algenformen. Linnaea 8:335–384.

    Google Scholar 

  • Kuznetsov, S. I. 1970. The microflora of lakes and its geochemical activity. Austin, London: University of Texas Press.

    Google Scholar 

  • Lankester, R. 1873. On a peach-colored bacterium—Bacterium rubescens n.s. Quarterly Journal of Microscopic Science 13:408–425.

    Google Scholar 

  • Larsen, H. 1952. On the culture and general physiology of the green sulfur bacteria. Journal of Bacteriology 64:187–196.

    PubMed  CAS  Google Scholar 

  • Lauterborn, R. 1915. Die sapropelische Lebewelt. Verhandlungen der naturhistorisch-medizinischen Vereinigung zu Heidelberg, Neue Folge, vol. 13:395–481.

    Google Scholar 

  • Matheron, R.: 1976. Contribution a l’étude écologique, systématique et physiologique des Chromatiaceae et des Chlorobiaceae isolées de sediments marins. Doctoral Thesis. University of Aix-Marseille.

    Google Scholar 

  • Matheron, R., Baulaigue, R. 1972. Bactéries photosynthétiques sulfureuses marines. Assimilation des substances organiques et minérales, et influence de la teneur en chlorure de sodium du milieu de culture sur leur développement. Archiv für Mikrobiologie 86:291–304.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, M. 1897. Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko. Centralblatt für Bakteriologie, Chapausitenkunde u. Infektionskrankheiten Abt. 2, 3:526–527.

    Google Scholar 

  • Molisch, H. 1907. Die Purpurbakterien nach neuen Untersuchungen. Jena: Gustav Fischer Verlag.

    Google Scholar 

  • Pfennig, N. 1962. Beobachtungen über das Schwärmen von Chromatium okenii. Archiv für Mikrobiologie 42:90–95.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1:179–189, 503–504.

    Google Scholar 

  • Pfennig, N. 1967. Photosynthetic bacteria. Annual Review of Microbiology 21:285–324.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., Cohen-Bazire, G. 1967. Some properties of the green bacterium Pelodictyon clathratiforme. Archiv für Mikrobiologie 59:226–236.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., Lippert, K. D. 1966. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie 55:245–256.

    Article  CAS  Google Scholar 

  • Puchkova, N. N., Gorlenko, V. M. 1976. New brown chlorobacterium Prosthecochloris phaeoasteroidea. [In Russian, with English summary.] Mikrobiologiya 45:655–660.

    CAS  Google Scholar 

  • Ruttner, F. 1962. Grundriβ der Limnologie, 3rd ed., pp. 171–172. Berlin: De Gruyter.

    Google Scholar 

  • Schegg, E. 1971. Produktion und Destruktion in der trophogenen Schicht. Schweizerische Zeitschrift für Hydrologie 33:427–532.

    Google Scholar 

  • Schlegel, H. G., Pfennig, N. 1961. Die Anreicherungskultur einiger Schwefelpurpurbakterien. Archiv für Mikrobiologie 38:1–39.

    Article  PubMed  CAS  Google Scholar 

  • Schrammeck, J. 1934. Untersuchungen über die Phototaxis der Purpurbakterien. Beiträge zur Biologie der Pflanzen 22:315–380.

    Google Scholar 

  • Schulz, E. 1937. Das Farbstreifensandwatt und seine Fauna, eine ökologisch biozönotische Untersuchung an der Nordsee. Kieler Meeresforschungen 1:359–378.

    Google Scholar 

  • Schulz, E., Meyer, H. 1939. Weitere Untersuchungen über das Farbstreifensandwatt. Kieler Meeresforschungen 3:321–336.

    Google Scholar 

  • Schweinfurth, G., Lewin, L. 1898. Beiträge zur Topographie und Geochemie des ägyptischen Natron-Thals. Zeitschrift der Gesellschaft für Erdkunde Berlin 33:1–24.

    CAS  Google Scholar 

  • Sletten, O., Singer, R. H. 1971. Sulfur bacteria in red lagoons. Journal of the Water Pollution Control Federation 43:2118–2122.

    CAS  Google Scholar 

  • Sorokin, Yu. I. 1970. Interrelations between sulfur and carbon turnover in a meromictic lake. Archiv für Hydrobiologie 66:391–446.

    Google Scholar 

  • Strzeszewski, B. 1913. Beitrag zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bulletin de l’Academie des Sciences de Cracovie, Serie B. 309–334.

    Google Scholar 

  • Stirn, J. 1971. Ecological consequences of marine pollution. Revue Internationale d’Oceanographie Medicale 24:13–46.

    CAS  Google Scholar 

  • Suckow, R. 1966. Schwefelmikrobengesellschaften der See- und Boddengewässer von Hiddensee. Zeitschrift für Allgemeine Mikrobiologie 6:309–315.

    Article  Google Scholar 

  • Szafer, W. 1910. Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bulletin de L’Academie des Sciences de Cracovie, Serie B. 161–167.

    Google Scholar 

  • Taga, N. 1967. Microbial coloring of sea water in tidal pool, with special reference of massive development of phototrophic bacteria, pp. 219–229. Information Bulletin on Planctology in Japan, Commemoration Number of Dr. Y. Matsue’s Sixtieth Birthday.

    Google Scholar 

  • Takahashi, M., Ichimura, S. 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnology and Oceanography 13:644–655.

    Article  Google Scholar 

  • Tew, R. W. 1966. Photosynthetic halophiles from Owens Lake. NASA Contractor Report CR-361, Washington: National Aeronautics and Space Administration.

    Google Scholar 

  • Tew, R. W., Alford, D. K., Fan, P. F., Yahiro, A. T. 1965. Photosynthetic halophiles from Owens Valley. Bacteriological Proceedings 1965:6.

    Google Scholar 

  • Trüper, H. G. 1970. Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgoländer wissenschaftliche Meeresuntersuchungen 20:6–16.

    Article  Google Scholar 

  • Trüper, H. G., Genovese, S. 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnology and Oceanography 13:225–232.

    Article  Google Scholar 

  • Utermöhl, H. 1925. Limnologische Phytoplanktonstudien. Archiv für Hydrobiologie, Suppl. 5:1–527.

    Google Scholar 

  • van Gemerden, H. 1974. Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microbial Ecology 1:104–119.

    Article  Google Scholar 

  • van Niel, C.B. 1932. On the morphology and physiology of the purple and green sulfur bacteria. Archiv für Mikrobiologie 3:1–112.

    Article  Google Scholar 

  • van Niel, C. B. 1971. Techniques for the enrichment, isolation, and maintenance of the photosynthetic bacteria, pp. 3–28. In: San Pietro, A. (ed.), Methods in enzymology, vol. 23, part A. New York, London: Academic Press.

    Google Scholar 

  • Warming, E. 1875. Om nogle ved Danmarks kyster levende bacterier. Videnskabse Meddelinger Dansk Naturhistorisk Foreninge 20/28:3–116.

    Google Scholar 

  • Winogradsky, S. N. 1888. Zur Morphologie und Physiologie der Schwefelbakterien. Leipzig: Felix.

    Google Scholar 

  • Yegunov, M. 1895. Sulfur bacteria of Odessa estuaries. Archiv Biologicheskii Nauk 1:378–393.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfennig, N., Trüper, H.G. (1981). Isolation of Members of the Families Chromatiaceae and Chlorobiaceae. In: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics