Advertisement

Isolation of Members of the Families Chromatiaceae and Chlorobiaceae

  • Norbert Pfennig
  • Hans G. Trüper

Abstract

The green and purple sulfur bacteria (Chlorobiaceae and Chromatiaceae) are two physiological-ecological groups of anaerobic phototrophic bacteria with anoxygenic photosynthesis. The two groups display a competitive advantage over other microorganisms in similar aquatic habitats. The most important environmental factors are anaerobic conditions, the presence of hydrogen sulfide, and illumination. Both families are treated in one chapter because they occur under similar environmental conditions and because the strains of both families are isolated with similar methods and media. Only the genus Ecto-thiorhodospira is treated in a seChapaute chapter (this Handbook, Chapter 15) because of methodological differences.

Keywords

Green Sulfur Bacterium Phototrophic Bacterium Purple Sulfur Bacterium Meromictic Lake Phototrophic Sulfur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anagnostides, K., Overbeck, J. 1966. Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79:163–174.Google Scholar
  2. Baas Becking, L. G. M., Wood, E. J. F. 1955. Biological processes in the estuarine environment. I. II. Ecology of the sulfur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 58:160–181.Google Scholar
  3. Baas Becking, L. G. M., Kaplan, I. R. 1956. Biological processes in the estuarine environment. III. Electrochemical considerations regarding the sulphur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 59:85–96.Google Scholar
  4. Bavendamm, W. 1924. Die farblosen und roten Schwefelbakterien des Süß- und Salzwassers. Jena; Gustav Fischer Verlag.Google Scholar
  5. Biebl, H., Malik, K. A. 1976. Long term preservation of photo-trophic bacteria, pp. 31–33. In: Codd, G. A., Stewart, W. D. P. (eds.), Proceedings of the Second International Symposium on Photosynthetic Prokaryotes, Dundee.Google Scholar
  6. Biebl, H., Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117:9–16.CrossRefGoogle Scholar
  7. Biebl, H., Pfennig, N. 1979. CO2-fixation by anaerobic photo-trophic bacteria in lakes, a review. Ergebnisse der Limnologie, special volume of Archiv für Hydrobiologie 12:48–58.Google Scholar
  8. Bose, S. K. 1963. Media for anaerobic growth of photosynthetic bacteria, pp. 501–519. In: Gest, H., San Pietro, A., Vernon, L. P. (eds.), Bacterial photosynthesis. Yellow Springs, Ohio: Antioch Press.Google Scholar
  9. Buder, J. 1915. Zur Kenntnis des Thiospirillum jenense und seiner Reaktion auf Lichtreize. Jahrbuch für wissenschaftliche Botanik 56:529–584.Google Scholar
  10. Caldwell, D. E., Tiedje, J. M. 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Canadian Journal of Microbiology 21:377–385.PubMedCrossRefGoogle Scholar
  11. Caumette, P. 1978. Participation des bactéries phototrophes sulfo-oxydantes dans le métabolisme du soufre en milieu lagunaire méditerranéen (Étang du Prévost). Doctoral Thesis, University of Montpellier, France.Google Scholar
  12. Cerniti, A. 1938. Le condizioni oceanografiche e biologiche del Mar Piccolo di Taranto durante l’agosto del 1938. Bolletino di Pesca, Piscicoltura ed Idrobiologia 14:711–751.Google Scholar
  13. Claus, D., Schaab-Engels, Ch. (eds.). 1977. German collection of microorganisms, catalogue of strains. Munich: Gesellschaft für Strahlen- und Umweltforschung mbH.Google Scholar
  14. Cohen, Y., Krumbein, W. E., Shilo, M. 1977. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnology and Oceanography 22:609–620.CrossRefGoogle Scholar
  15. Cohn, F. 1875. Untersuchungen über Bakterien II. Beiträge zur Biologie der Pflanzen 1:141–207.Google Scholar
  16. Cooper, D. E., Rands, M. B., Woo, C.-P. 1975. Sulfide reduction in fellmongery effluent by red sulfur bacteria. Journal of the Water Pollution Control Federation 47:2088–2100.PubMedGoogle Scholar
  17. Culver, D. A., Brunskill, G. J. 1969. Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnology and Oceanography 14:862–873.CrossRefGoogle Scholar
  18. Cviic, V. 1955. Red water in the lake “Malo Jezero” (island of Mljet). Acta Adriatica 6:1–15.Google Scholar
  19. Cviié, V. 1960. Apparition d’ “eau rouge” dans le Veliko Jezero (île de Mljet). Rapports et Procès-Verbeaux des Reunions de la Commission Internationale de l’ Exploration Scientifique de la Mer Mediterranée 15:79–81.Google Scholar
  20. Czeczuga, B. 1968a. Primary production of the purple sulfuric bacteria Thiopedia rosea Winogr. (Thiorhodoceae). Photo-synthetica 2:161–166.Google Scholar
  21. Czeczuga, B. 1968b. Primary production of the green hydrosul-furic bacteria Chlorobium limicola Nads. (Chlorobacteria-ceae). Photosynthetica 2:11–15.Google Scholar
  22. Dickman, M., Artuz, I. 1978. Mass mortality of photosynthetic bacteria as a mechanism for dark lamina formation in sediments of the Black Sea. Nature 275:191–195.CrossRefGoogle Scholar
  23. Düggeli, M. 1924. Hydrobiologische Untersuchungen im Pioragebiet. Bakteriologische Untersuchungen am Ritomsee. Schweizerische Zeitschrift für Hydrologie 2:65–205.CrossRefGoogle Scholar
  24. Ehrenberg, Chr. G. 1838. Die Infusionsthierchen als vollkommene Organismen. Leipzig: Voss.CrossRefGoogle Scholar
  25. Eimhjellen, K. E. 1967. Photosynthetic bacteria and carotenoids from a sea sponge Halichondrium panicea. Acta Chemica Scandinavica 21:2280–2281.CrossRefGoogle Scholar
  26. Eimhjellen, K.E . 1970. Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria. Archiv für Mikrobiologie 73:193–194.PubMedGoogle Scholar
  27. Eimhjellen, K. E., Steensland, H., Traetteberg, J. 1967. A Thiococcus sp. nov. gen., its pigments and internal membrane system. Archiv für Mikrobiologie 59:82–92.PubMedCrossRefGoogle Scholar
  28. Fenchel, T. 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6:1–182.CrossRefGoogle Scholar
  29. Genovese, S. 1963. The distribution of the H2S in the lake of Faro (Messina) with particular regard to the presence of “red water”, pp. 194–204. In: Oppenheimer, C. H. (ed.), Symposium on Marine Microorganisms. Springfield, Illinois: Charles C. Thomas.Google Scholar
  30. Giesberger, G. 1947. Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species. Antonie van Leeuwenhoek Journal of Microbiology and Serology 13:135–148.CrossRefGoogle Scholar
  31. Gietzen, J. 1931. Untersuchungen über marine Thiorhodaceen. Zentralblatt für Bakteriologie, Chapausitenkunde und Infektionskrankheiten, Abt. 2 83:183–218.Google Scholar
  32. Gloyna, E. F. 1971. Waste stabilization ponds. World Health Organization Monograph Series No. 60. Geneva: World Health Organization.Google Scholar
  33. Gorlenko, V. M. 1968. Photosynthetizing sulphur bacteria from reservoirs of South Crimea. [In Russian, with English summary.] Mikrobiologiya 37:745–748.Google Scholar
  34. Gorlenko, V. M., Chebotarev, E. N., Kachalkin, V. I. 1973. Microbiological processes of oxidation of hydrogen sulfide in the Repnoe lake (Slavonic lakes). Microbiology [English translation of Mikrobiologiya] 42:723–728.Google Scholar
  35. Gorlenko, V. M., Lebedeva, E. V. 1971. New green sulphur bacteria with apophyses. [In Russian, with English summary.] Mikrobiologiya 40:1035–1039.Google Scholar
  36. Gorlenko, V. M., Dubinina, G. A., Kusnetsov, S. I. 1977. Ecology of aquatic microorganisms. [In Russian.] Moscow: Izdatel’stvo Nauka.Google Scholar
  37. Gorlenko, V. M., Vainstein, M. B., Kachalkin, V. I. 1978. Microbiological characteristic of lake Mogilnoye. Archiv für Hydrobiologie 81:475–492.Google Scholar
  38. Hashwa, F. A., Trüper, H. G. 1978. Viable phototrophic sulfur bacteria from the Black Sea bottom. Helgoländer Wissenschaftliche Meeresuntersuchungen 31:249–253.CrossRefGoogle Scholar
  39. Hatzikakidis, A. D. 1952. Periodike erythrotes ton ydaton tes limnothalasses tou Aitolikou. Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6:21–52.Google Scholar
  40. Hatzikakidis, A. D. 1953. Epochiakai ydrologikai ereynai eis tas limnothalassas Mesologgiou kai Aitolikou. Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6:85–143.Google Scholar
  41. Hauser, B., Michaelis, H. 1975. Die Makrofauna der Watten, Strände, Riffe und Wracks um den Hohen Knechtsand in der Wesermündung. Forschungsstelle für Insel- und Küstenschutz Norderney, Jahresbericht 1974, 26:85–119.Google Scholar
  42. Heldt, H. J. 1952. Eaux rouges. Bulletin de la Societé des Sciences Naturelles de Tunisie 5:103–106.Google Scholar
  43. Hof, T. 1935. Investigations concerning bacterial life in strong brines. Recueuil des Travaux Botaniques Néerlandais 32:92–173.Google Scholar
  44. Hoffmann, C. 1942. Beiträge zur Vegetation des Farbstreifen-Sandwattes. Kieler Meeresforschungen 4:85–108.Google Scholar
  45. Holm, Ff. W., Vennes, J. W. 1970. Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Applied Microbiology 19:988–996.PubMedGoogle Scholar
  46. Imhoff, J. F. 1976. Phototrophe Bakterien salzhaltiger Standorte: Ökologische und taxonomische Aspekte. Diploma Thesis. University of Bonn.Google Scholar
  47. Imhoff, J. F., Hashwa, F., Trüper, H. G. 1978. Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Archiv für Hydrobiologie 84:381–388.Google Scholar
  48. Imhoff, J. F., Trüper, H. G. 1976. Marine sponges as habitats of anaerobic phototrophic bacteria. Microbial Ecology 3:1–9.CrossRefGoogle Scholar
  49. Isachenko, B. L. 1914. Studies of bacteria of the Arctic Ocean. Cited in: Gorlenko, Vainstein, and Kachalkin, 1978.Google Scholar
  50. Jannasch, H. W. 1957. Die bakterielle Rotfärbung der Salzseen des Wadi Natrun. Archiv für Hydrobiologie 53:425–433.Google Scholar
  51. Jannasch, H. W., Trüper, H. G., Tuttle, J. H. 1974. Microbial sulfur cycle in Black Sea, pp. 419–425. In: Degens, E. T., Ross, D. A., (eds.), The Black Sea—geology, chemistry and biology. Tulsa, Oklahoma: American Association of Petroleum Geologists (Memoir 20).Google Scholar
  52. Kaiser, P. 1966. Contribution a l’étude de l’écologie des bactéries photosynthétiques. Annales de l’Institut Pasteur 111: 733–749.PubMedGoogle Scholar
  53. Kolkwitz, R. 1909. Schizomycetes. Kryptogamenflora der Mark Brandenburg, vol. 5:1–186. Leipzig: Verlag von Gebrüder Borntraeger.Google Scholar
  54. Kondratieva, E. N. 1965. Photosynthetic bacteria. Jerusalem: Israel: Program for Scientific Translations.Google Scholar
  55. Kriss, A. E., Rukina, E. A. 1953. Purple sulfur bacteria in deep sulfurous water of the Black Sea. [In Russian.] Doklady Akademii Nauk SSSR 93:1107–1110.PubMedGoogle Scholar
  56. Kützing, Fr. T. 1883. Beiträge zur Kenntnis über die Entstehung und Metamorphose der niederen vegetabilischen Organismen, nebst einer systematischen Zusammenstellung der hierher gehörigen niedern Algenformen. Linnaea 8:335–384.Google Scholar
  57. Kuznetsov, S. I. 1970. The microflora of lakes and its geochemical activity. Austin, London: University of Texas Press.Google Scholar
  58. Lankester, R. 1873. On a peach-colored bacterium—Bacterium rubescens n.s. Quarterly Journal of Microscopic Science 13:408–425.Google Scholar
  59. Larsen, H. 1952. On the culture and general physiology of the green sulfur bacteria. Journal of Bacteriology 64:187–196.PubMedGoogle Scholar
  60. Lauterborn, R. 1915. Die sapropelische Lebewelt. Verhandlungen der naturhistorisch-medizinischen Vereinigung zu Heidelberg, Neue Folge, vol. 13:395–481.Google Scholar
  61. Matheron, R.: 1976. Contribution a l’étude écologique, systématique et physiologique des Chromatiaceae et des Chlorobiaceae isolées de sediments marins. Doctoral Thesis. University of Aix-Marseille.Google Scholar
  62. Matheron, R., Baulaigue, R. 1972. Bactéries photosynthétiques sulfureuses marines. Assimilation des substances organiques et minérales, et influence de la teneur en chlorure de sodium du milieu de culture sur leur développement. Archiv für Mikrobiologie 86:291–304.PubMedCrossRefGoogle Scholar
  63. Miyoshi, M. 1897. Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko. Centralblatt für Bakteriologie, Chapausitenkunde u. Infektionskrankheiten Abt. 2, 3:526–527.Google Scholar
  64. Molisch, H. 1907. Die Purpurbakterien nach neuen Untersuchungen. Jena: Gustav Fischer Verlag.Google Scholar
  65. Pfennig, N. 1962. Beobachtungen über das Schwärmen von Chromatium okenii. Archiv für Mikrobiologie 42:90–95.PubMedCrossRefGoogle Scholar
  66. Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralblatt für Bakteriologie, Chapausitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1:179–189, 503–504.Google Scholar
  67. Pfennig, N. 1967. Photosynthetic bacteria. Annual Review of Microbiology 21:285–324.PubMedCrossRefGoogle Scholar
  68. Pfennig, N., Cohen-Bazire, G. 1967. Some properties of the green bacterium Pelodictyon clathratiforme. Archiv für Mikrobiologie 59:226–236.PubMedCrossRefGoogle Scholar
  69. Pfennig, N., Lippert, K. D. 1966. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie 55:245–256.CrossRefGoogle Scholar
  70. Puchkova, N. N., Gorlenko, V. M. 1976. New brown chlorobacterium Prosthecochloris phaeoasteroidea. [In Russian, with English summary.] Mikrobiologiya 45:655–660.Google Scholar
  71. Ruttner, F. 1962. Grundriβ der Limnologie, 3rd ed., pp. 171–172. Berlin: De Gruyter.Google Scholar
  72. Schegg, E. 1971. Produktion und Destruktion in der trophogenen Schicht. Schweizerische Zeitschrift für Hydrologie 33:427–532.Google Scholar
  73. Schlegel, H. G., Pfennig, N. 1961. Die Anreicherungskultur einiger Schwefelpurpurbakterien. Archiv für Mikrobiologie 38:1–39.PubMedCrossRefGoogle Scholar
  74. Schrammeck, J. 1934. Untersuchungen über die Phototaxis der Purpurbakterien. Beiträge zur Biologie der Pflanzen 22:315–380.Google Scholar
  75. Schulz, E. 1937. Das Farbstreifensandwatt und seine Fauna, eine ökologisch biozönotische Untersuchung an der Nordsee. Kieler Meeresforschungen 1:359–378.Google Scholar
  76. Schulz, E., Meyer, H. 1939. Weitere Untersuchungen über das Farbstreifensandwatt. Kieler Meeresforschungen 3:321–336.Google Scholar
  77. Schweinfurth, G., Lewin, L. 1898. Beiträge zur Topographie und Geochemie des ägyptischen Natron-Thals. Zeitschrift der Gesellschaft für Erdkunde Berlin 33:1–24.Google Scholar
  78. Sletten, O., Singer, R. H. 1971. Sulfur bacteria in red lagoons. Journal of the Water Pollution Control Federation 43:2118–2122.Google Scholar
  79. Sorokin, Yu. I. 1970. Interrelations between sulfur and carbon turnover in a meromictic lake. Archiv für Hydrobiologie 66:391–446.Google Scholar
  80. Strzeszewski, B. 1913. Beitrag zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bulletin de l’Academie des Sciences de Cracovie, Serie B. 309–334.Google Scholar
  81. Stirn, J. 1971. Ecological consequences of marine pollution. Revue Internationale d’Oceanographie Medicale 24:13–46.Google Scholar
  82. Suckow, R. 1966. Schwefelmikrobengesellschaften der See- und Boddengewässer von Hiddensee. Zeitschrift für Allgemeine Mikrobiologie 6:309–315.CrossRefGoogle Scholar
  83. Szafer, W. 1910. Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bulletin de L’Academie des Sciences de Cracovie, Serie B. 161–167.Google Scholar
  84. Taga, N. 1967. Microbial coloring of sea water in tidal pool, with special reference of massive development of phototrophic bacteria, pp. 219–229. Information Bulletin on Planctology in Japan, Commemoration Number of Dr. Y. Matsue’s Sixtieth Birthday.Google Scholar
  85. Takahashi, M., Ichimura, S. 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnology and Oceanography 13:644–655.CrossRefGoogle Scholar
  86. Tew, R. W. 1966. Photosynthetic halophiles from Owens Lake. NASA Contractor Report CR-361, Washington: National Aeronautics and Space Administration.Google Scholar
  87. Tew, R. W., Alford, D. K., Fan, P. F., Yahiro, A. T. 1965. Photosynthetic halophiles from Owens Valley. Bacteriological Proceedings 1965:6.Google Scholar
  88. Trüper, H. G. 1970. Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgoländer wissenschaftliche Meeresuntersuchungen 20:6–16.CrossRefGoogle Scholar
  89. Trüper, H. G., Genovese, S. 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnology and Oceanography 13:225–232.CrossRefGoogle Scholar
  90. Utermöhl, H. 1925. Limnologische Phytoplanktonstudien. Archiv für Hydrobiologie, Suppl. 5:1–527.Google Scholar
  91. van Gemerden, H. 1974. Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microbial Ecology 1:104–119.CrossRefGoogle Scholar
  92. van Niel, C.B. 1932. On the morphology and physiology of the purple and green sulfur bacteria. Archiv für Mikrobiologie 3:1–112.CrossRefGoogle Scholar
  93. van Niel, C. B. 1971. Techniques for the enrichment, isolation, and maintenance of the photosynthetic bacteria, pp. 3–28. In: San Pietro, A. (ed.), Methods in enzymology, vol. 23, part A. New York, London: Academic Press.Google Scholar
  94. Warming, E. 1875. Om nogle ved Danmarks kyster levende bacterier. Videnskabse Meddelinger Dansk Naturhistorisk Foreninge 20/28:3–116.Google Scholar
  95. Winogradsky, S. N. 1888. Zur Morphologie und Physiologie der Schwefelbakterien. Leipzig: Felix.Google Scholar
  96. Yegunov, M. 1895. Sulfur bacteria of Odessa estuaries. Archiv Biologicheskii Nauk 1:378–393.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Norbert Pfennig
  • Hans G. Trüper

There are no affiliations available

Personalised recommendations