The Non-Linear Field Theories of Mechanics

  • C. Truesdell
  • W. Noll

Abstract

1. Purpose of the non-linear theories. Matter is commonly found in the form of materials. Analytical mechanics turned its back upon this fact, creating the centrally useful but abstract concepts of the mass point and the rigid body, in which matter manifests itself only through its inertia, independent of its constitution; “modern” physics likewise turns its back, since it concerns solely the small particles of matter, declining to face the problem of how a specimen made up of such particles will behave in the typical circumstances in which we meet it. Materials, however, continue to furnish the masses of matter we see and use from day to day: air, water, earth, flesh, wood, stone, steel, concrete, glass, rubber, ... All are deformable. A theory aiming to describe their mechanical behavior must take heed of their deformability and represent the definite principles it obeys.

General references

List of Works Cited

  1. [1]
    Hooke, R.: Lectures de Potentia Restitutiva, or of Spring Explaining the Power of Springing Bodies. London = R. T. Gunther: Early Science in Oxford 8, 331–356 (1931).Google Scholar
  2. [1]
    Euler, L.: De aequilibrio et motu corporum flexuris elasticis iunctorum. Novi comm. acad. sci. Petrop. 13 (1768), 259–304 = Opera omnia II 11, 3–16. 1769Google Scholar
  3. [1]
    Coulomb, C. A.: Recherches sur la meilleure manière de fabriquer les aiguilles aimantées... Mém. math. phys. divers savans 9, 165–264. 1780Google Scholar
  4. [1]
    Coulomb, C. A.: Recherches théoriques et expérimentales sur la force de torsion, et sur l’élasticité de fils de métal: Application de cette théorie à l’emploi des métaux dans les arts et dans différentes expériences de physique: Construction de différentes balances de torsion, pour mesurer les plus petits degrés de force. Observations sur les loix de l’élasticité et de la cohérence. Mém. acad. sci. Paris 1784, 229–272. 1787Google Scholar
  5. [1]
    Young, T.: Mathematical Elements of Natural Philosophy. A Course of Lectures on Natural Philosophy and the Mechanical Arts 2, 1–86. London. 1807Google Scholar
  6. [1]
    Cauchy, A.-L.: Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philomath. Paris 9–13 = Oeuvres (2) 2, 300–304. 1823Google Scholar
  7. [1]
    Cauchy, A.-L.: Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou non élastique. Ex. de Math. 3, 160–187 = Oeuvres (2) 8, 195–226. 1828Google Scholar
  8. [1]
    Cauchy, A.-L.: Sur l’équilibre et le mouvement intérieur des corps considérés comme des masses continues. Ex. de Math. 4, 293–319 = Oeuvres 9, 342–369. 1829Google Scholar
  9. [1] Poisson, S.-D.: Mémoire sur les équations générales de l’équilibre et du mouvement des corps élastiques et des fluides (1829).
    J. École Poly. 13, Cahier 20, 1–174.Google Scholar
  10. [1]
    Piola, G.: Nuova analisi per tutte le questioni della meccanica molecolare. Mem. Mat. Fis. Soc. Ital. Modena 21 (1835), 155–231.Google Scholar
  11. [1] Green, G.: On the laws of reflection and refraction of light at the common surface of two non-crystallised media (1837).
    Trans. Cambridge Phil. Soc. 7 (1838–1842) 1–24 = Papers, 245–269. 1839Google Scholar
  12. [1] Green, G.: On the propagation of light in crystallised media (1839).
    Trans. Cambridge Phil. Soc. 7 (1838–1842), 121–140 = Papers, 293–311. 1841Google Scholar
  13. [1]
    ST. Venant, A.-J.-C. B. DE: Note à joindre au mémoire sur la dynamique des fluides, présenté le 14 avril 1834. C. R. Acad. Sci. Paris 17, 1240–1243. 1843Google Scholar
  14. [1]
    ST. Venant, A.-J.-C. B. DE: Sur les pressions qui se développent à l’intérieur des corps solides lorsque les déplacements de leurs points, sans altérer l’élasticité, ne peuvent cependant pas être considérés comme très petits. Bull. Soc. Philo-math. 5, 26–28. 1844Google Scholar
  15. [1]
    Stokes, G. G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Cambridge Phil. Soc. 8 (1844–1849), 287–319 = Papers 1, 75–129. 1845Google Scholar
  16. [7]
    Sr. Venant, A.-J.-C. B. DE: Mémoire sur l’équilibre des corps solides, dans les limites de leur élasticité, et sur les conditions de leur résistance, quand]es dé-placements éprouvés par leurs points ne sont pas très-petits. C. R. Acad. Sci. Paris 24, 260–263. 1847Google Scholar
  17. [1] Haughton, S.: On the equilibrium and motion of solid and fluid bodies (1846).
    Trans. Roy. Irish Acad. 21, 151–198. 1849Google Scholar
  18. [1]
    Cauchy, A.-L.: Mémoire sur les systèmes isotropes de points matériels. Mém. Acad. Sci. Paris 22, 615–654 = Oeuvres (1) 2, 351–386. 1850Google Scholar
  19. [2]
    Kirchhoff, G.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. reine angew. Math. 40, 51–88 = Ges. Abh. 237–279. 1850Google Scholar
  20. [1]
    Cauchy, A.-L.: Note sur l’équilibre et les mouvements vibratoires des corps solides. C. R. Acad. Sci. Paris 32, 323–326 = Oeuvres (1) 11, 341–346. 1851Google Scholar
  21. [2]
    DA Silva, D. A.: Memoria sobre a rotaçäo das forças em torno dos pontos d’applicaçäo. Mein. Ac. Sc. Lisboa (2a) 31, 61–231. 1851Google Scholar
  22. [1]
    Kirchhoff, G.: TJber die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzgsber. Akad. Wiss. Wien 9, 762–773. (Not repr. in Abh.) 1852Google Scholar
  23. [1] Maxwell, J. C.: On the equilibrium of elastic solids (1850).
    Trans. Roy. Soc. Edinb. 20 (1848/1853), 87–120 = Papers 1, 30–73. 1853Google Scholar
  24. [1] ST. Venant, A.-J.-C. B. DE: Mémoire sur la torsion des prismes... (1853).
    Mém. Divers Savants Acad. Sci. Paris 14, 233–560. 1855Google Scholar
  25. [2] Thomson, W. (Lord Kelvin): On the thermo-elastic and thermo-magnetic properties of matter. Quart. J. Math. 1 (1855-1857), 55-77 = (with notes and additions)
    Phil. Mag. (5) 5 (1878), 4–27 = Pt. Vii of On the dynamical theory of heat. Papers 1, 291–316. 1855Google Scholar
  26. [1]
    Thomson, W. (Lord Kelvin): Elements of a mathematical theory of elasticity. Phil. Trans. Roy. Soc. Lond. 146, 481–498. 1856CrossRefGoogle Scholar
  27. [1]
    Neumann, C.: Zur Theorie der Elasticität. J. reine angew. Math. 57, 281–318. 1860MATHCrossRefGoogle Scholar
  28. [1]
    ST. Venant, A.-J.-C. B. DE: Mémoire sur la distribution des élasticités autour de chaque point d’un solide ou d’un milieu de contexture quelconque, particulièrement lorsqu’il est amorphe sans être isotrope. J. Math. Pures Appl. (2) 8, 257–295, 353–430. 1863Google Scholar
  29. [2]
    Thomson, W. (Lord Kelvin): Dynamical problems regarding elastic spheroidal shells and spheroids of incompressible liquid. Phil. Trans. Roy. Soc. Lond. A 153, 583–616 = Papers 3, 351–394. 1863Google Scholar
  30. [1]
    Kleitz, C.: Sur les forces moléculaires dans les liquides en mouvement avec application à l’hydrodynamique. C. R. Acad. Sci. Paris 63, 988–991. (Partial abstract of [1873, 1]). 1866Google Scholar
  31. [1]
    Maxwell, J. C.: On the dynamical of theory gases (1866). Phil. Trans. Roy. Soc. Lond. A 157, 49–88 = Phil. Mag. (4) 35 (1868), 129–145, 185–217 = Papers 2, 26–78. 1867Google Scholar
  32. [2]
    Thomson, W. (Lord Kelvin), and P. G. Tait: Treatise on Natural Philosophy, Part I. Cambridge. [The second edition, which appeared in 1879, has been reprinted by Dover Publications, N.Y., under the redundant as well as gratuitous title, “Principles of Mechanics and Dynamics”.] 1867Google Scholar
  33. [1]
    Bousslnesq, J.: Sur l’influence des frottements dans les mouvements reguliers des fluides. J. Math. Pures Appl. (2) 13, 377–438. 1868Google Scholar
  34. [2]
    ST. Venant, A.-J.-C. B. DE: Formules de l’élasticité des corps amorphes que des compressions permanentes et inégales ont rendus hétérotropes. J. Math. Pures Appl. (2) 13, 242–254. 1868Google Scholar
  35. [1]
    ST. Venant, A.-J.-C. B. DE: Note sur les valeurs que prennent les pressions dans un solide élastique isotrope lorsque l’on tient compte des dérivées d’ordre supérieur des déplacements très-petits que leurs points ont éprouvés. C. R. Acad. Sci. Paris 68, 569–571. 1869MATHGoogle Scholar
  36. [2]
    ST. Venant, A.-J.-C. B. DE: Rapport sur un mémoire de M. M.Urice Levy, relatif à l’hydrodynamique des liquides homogènes, particulièrement à leur écoulement rectiligne et permanent. C. R. Acad. Sci. Paris 68, 582–592. 1869MATHGoogle Scholar
  37. [1]
    BousslNEsQ, J.: Note complémentaire au mémoire sur les ondes liquides periodi¬ques, presenté le 29 novembre 1869, et approuvé par l’Académie le 21 fevrier 1870. — Établissement de relations générales et nouvelles entre l’énergie interne d’un corps fluide ou solide, et ses pressions ou forces élastiques. C. R. Acad. Sci. Paris 71, 400–402. 1870Google Scholar
  38. ] ST. Venant, A.-J.-C. B. DE: Formules des augmentations que de petites dé formations d’un solide apportent aux pressions ou forces élastiques, supposées considérables, qui déjà étaient en jeu dans son intérieur. J. Math. Pures Appl. (2) 16, 275–307. 1871Google Scholar
  39. [7]
    Bousslnesq, J.: Théorie des ondes liquides periodiques (1869). Mém. Divers Savants 20, 509–615. Abstracts in C. R. Acad. Sci. Paris 68, 905–906 (1869); 70, 360–367 (1870), supplemented by [1870, 1]. 1872Google Scholar
  40. [2]
    Sr. Venant, A.-J.-C. B. DE: Rapport sur un mémoire de M. Kleitz intitulé: Études sur les forces moléculaires dans les liquides en mouvement, et application à l’hydrodynamique. C. R. Acad. Sci. Paris 74, 426–438. 1872MATHGoogle Scholar
  41. [3]
    ST. Venant, A.-J.-C. B. DE: Sur l’hydrodynamique des cours d’eau. C. R. Acad. Sci. Paris 74, 570–577, 649–657, 693–701, 770–774. 1872Google Scholar
  42. [1]
    Kleitz, C.: Etudes sur les forces moléculaires dans les liquides en mouvement et application à l’hydrodynamique. Paris: Dunod. 1873Google Scholar
  43. [1]
    Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Sitzgsber. Akad. Wiss. Wien 702, 275–306 = Ann. Physik, Ergänz. 7, 624–654 (1876) = Wiss. Abh. 1, 616–639. 1874Google Scholar
  44. [2]
    Meyer, O.-E.: Zur Theorie der inneren Reibung. J. reine angew. Math. 78, 130–135. 1874MATHGoogle Scholar
  45. [3]
    Meyer, O.-E.: Theorie der elastischen Nachwirkung. Ann. Physik 151 = (6) 1, 108–119. 1874CrossRefGoogle Scholar
  46. [1]
    Gibbs, J. W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3 (1875–1878), 108–248, 343–524 = Works 1, 55–353. 1875Google Scholar
  47. [2]
    Meyer, O. E.: Zusatz zu der Abhandlung zur Theorie der inneren Reibung. J. reine angew. Math. 80, 315–316. 1875MATHGoogle Scholar
  48. ] Butcher, J. G.: On viscous fluids in motion. Proc. Lond. Math. Soc. 8 (1876/77), 103–135. 1876Google Scholar
  49. [2]
    Maxwell, J. C.: On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. Roy Soc. Lond. 170, 231–256= Papers 2, 680–712. 1876Google Scholar
  50. [1]
    Mach, E.: Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt. Leipzig: Brockhaus. [There are many later editions and translations.] 1883Google Scholar
  51. [1]
    Reynolds, O.: On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Phil. Mag. (2) 20, 469–481 = Papers 2, 203–216. 1885Google Scholar
  52. ] Todhunter, I., and K. Pearson: A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, 1 [This is mainly the work of Pearson, as indicated in the enumeration of sections.] Cambridge: Cambridge Univ. Press. Reprinted, Dover Publications, New York, 1960. 1886Google Scholar
  53. [1]
    Reynolds, O.: Experiments showing dilatancy, a property of granular material, possibly connected with gravitation. Proc. Roy. Inst. Gt. Britain 11, 354–363 = Papers 2, 217–227. 1887Google Scholar
  54. [2]
    Voigt, W.: Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh. Ges. Wiss. Göttingen 34, 100 pp. 1887Google Scholar
  55. [1]
    Barus, C.: Maxwell’S theory of the viscosity of solids and its physical verifica¬tion. Phil. Mag. (5) 26, 183–217. 1888MATHGoogle Scholar
  56. [2]
    Basset, A. B.: A Treatise on Hydrodynamics. 2 vols. Cambridge: Cambridge Univ. Press. 1888Google Scholar
  57. [3] Thomson, W. (Lord Kelvin): On the reflection and refraction of light. Phil. Mag. (5)
    414–425. Reprinted in part as §§ 107–111 of Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. London: Clay & Sons 1904. 1888Google Scholar
  58. [1]
    Pearson, K.: On the generalized equations of elasticity, and their application to the wave theory of light. Proc. Lond. Math. Soc. 20, 297–350. 1889CrossRefGoogle Scholar
  59. [2]
    PoincarÉ, H.: Leçons sur la Théorie Mathématique de la Lumière. Paris. 1889Google Scholar
  60. [3]
    Voigt, W.: Über adiabatische Elasticitätsconstanten. Ann. Physik 36, 743–759. 1889ADSCrossRefGoogle Scholar
  61. [4]
    VoIgt,W.: Über die innere Reibung der festen Körper, insbesondere der Krystalle. Göttinger Abh. 36, No. 1. 1889Google Scholar
  62. [1]
    Schoenfliess, A.: Kristallsysteme und Kristallstruktur. Leipzig. (33) 1891Google Scholar
  63. [1]
    PoincarÉ, H.: Leçons sur la Théorie de l’Elasticité. Paris. 1892Google Scholar
  64. [2]
    Voigt, W.: Über innere Reibung fester Körper, insbesondere der Metalle. Ann. Physik (2) 47, 671–693. 1892MATHCrossRefGoogle Scholar
  65. [3]
    Voigt, W.: Bestimmung der Constanten der Elasticität und Untersuchung der inneren Reibung für einige Metalle. Göttinger Abh. 38, No. 2. 1892Google Scholar
  66. [1]
    Barus, C.: Note on the dependence of viscosity on pressure and temperature. Proc. Amer. Acad. Arts Sci. (2) 19 = 27, 13–18. 1893CrossRefGoogle Scholar
  67. [2]
    Barus, C.: Isothermals, isopiestics, and isometrics relative to viscosity. Amer. J. Sci. (3) 45 = 145, 87–96. 1893Google Scholar
  68. [3]
    Cellerier, G.: Sur les principes généraux de la thermodynamique et leur application aux corps élastiques. Bull. Soc. Math. France 21, 26–43. 1893MathSciNetMATHGoogle Scholar
  69. [4] Todhunter, I., and K. Pearson: A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, 2 [almost entirely the work of Pearson]
    Cambridge: Cambridge Univ. Press. Reprinted Dover Publications, New York, 1960.Google Scholar
  70. [5]
    Voigt, W.: Über eine anscheinend nothwendige Erweiterung der Theorie der Elasticität. Göttinger Nachr. 534–552 = Ann. Physik (2) 52, 536–555. 1893Google Scholar
  71. [1]
    Finger, J.: Das Potential der inneren Kräfte und die Beziehungen zwischen den Deformationen und den Spannungen in elastisch isotropen Körpern bei Berücksichtigung von Gliedern, die bezüglich der Deformationselemente von dritter, beziehungsweise zweiter Ordnung sind. Sitzgsber. Akad. Wiss. Wien (II a) 103, 163–200, 231–250. 1894Google Scholar
  72. [2]
    Finger, J.: Über das Kriterion der Coaxialität zweier Mittelpunktsflächen zweiter Ordnung. Sitzgsber. Akad. Wiss. Wien (II a) 103, 1061–1065. 1894MATHGoogle Scholar
  73. [3]
    Finger, J.: liber die allgemeinsten Beziehungen zwischen Deformationen und den zugehörigen Spannungen in aeolotropen und isotropen Substanzen. Sitzgsber. Akad. Wiss. Wien (IIa) 103, 1073–1100. 1894MATHGoogle Scholar
  74. [1]
    VoIgt, W.: Liber Medien ohne innere Kräfte und eine durch sie gelieferte mechani¬sche Deutung der Maxwell-Hertzschen Gleichungen. Abh. Ges. Wiss. Göttingen 1894, 72–79. 1895Google Scholar
  75. [1]
    Cosserat, E., and F.: Sur la théorie de l’élasticité. Ann. Toulouse 10, 1–116. 1896MathSciNetCrossRefGoogle Scholar
  76. [1]
    Brillouin, M.: Théorie moléculaire des gaz. Diffusion du mouvement et de l’énergie. Ann. Chim. (7) 20, 440–485. 1900Google Scholar
  77. [1]
    Duhem, P.: Sur les théorèmes D’Hugoniot, les lemmes de M. Hadamard et la propagation des ondes dans les fluides visqueux. C. R. Acad. Sci. Paris 132, 117–120. 1901MATHGoogle Scholar
  78. [2]
    Duhem, P.: Des ondes qui peuvent persister en un fluide visqueux. C. R. Acad. Sci. Paris 133, 579–580. 1901Google Scholar
  79. [3]
    Hadamard, J.: Sur la propagation des ondes. Bull. Soc. Math. France 29, 50–60. 1901MATHGoogle Scholar
  80. [4]
    Korteweg, D. J.: Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypo¬thèse d’une variation continue de la densité. Arch. Néerl. Sci. Ex. Nat. (2) 6, 1–24. 1901MATHGoogle Scholar
  81. [5]
    Natanson, L.: On the laws of viscosity. Phil. Mag. (6) 2, 342–356. 1901MATHGoogle Scholar
  82. [6]
    Natanson, L.: Sur les lois de la viscosité. Bull. Int. Acad. Sci. Cracovie 95–111. 1901Google Scholar
  83. [7]
    Natanson, L.: Sur la double refraction accidentelle dans les liquides. Bull. Int. Acad. Sci. Cracovie 161–171. 1901Google Scholar
  84. [8]
    Natanson, L.: Liber die Gesetze der inneren Reibung. Z. physik. Chem. 38, 690–704. 1901Google Scholar
  85. [9]
    Reynolds, O.: On the equations of motion and the boundary conditions for viscous fluids (1883). Papers 2, 132–137. 1901Google Scholar
  86. [1]
    Duhem, P.: Recherches sur l’hydrodynamique. Seconde Partie. Ann. Toulouse (2) 4, 101–169.Google Scholar
  87. Also included in reprint, Paris: Gauthier Villars 1903. 1902Google Scholar
  88. [2]
    Natanson, L.: Sur la propagation d’un petit mouvement dans un fluide visqueux. Bull. Int. Acad. Sci. Cracovie 19–35. 1902Google Scholar
  89. [3]
    Natanson, L.: Sur la fonction dissipative d’un fluide visqueux. Bull. Int. Acad. Sci. Cracovie 448–494. 1902Google Scholar
  90. [4]
    Natanson, L.: Sur la déformation d’un disque plastico-visqueux. Bull. Int. Acad. Sci. Cracovie 494–512. 1902Google Scholar
  91. [5]
    Natanson, L.: Sur la conductibilité calorifique d’un gaz en mouvement. Bull. Int. Acad. Sci. Cracovie 137–146. 1902Google Scholar
  92. [1]
    Dunem, P.: Sur la viscosité en un milieu vitreux. C. R. Acad. Sci. Paris 136, 281–283. 1903Google Scholar
  93. [2]
    Duhem, P.: Sur les équations du mouvement et la relation supplémentaire au sein d’un milieu vitreux. C. R. Acad. Sci. Paris 136, 343–345. 1903MATHGoogle Scholar
  94. [3]
    Duhem, P.: Sur la propagation des ondes dans un milieu parfaitement élastique affecté de déformations finies. C. R. Acad. Sci. Paris 136, 1379–1381. 1903MATHGoogle Scholar
  95. [4]
    Hadamard, J.: Leçons sur la Propagation des Ondes et les Équations de l’Hydro¬dynamique. Paris: Hermann. 1903Google Scholar
  96. [5]
    Natanson, L.: Liber einige von Herrn B. Weinstein zu meiner Theorie der inneren Reibung gemachten Bemerkungen. Physik. Z. 4, 541–543. 1903MATHGoogle Scholar
  97. [6]
    Natanson, L.: Sur l’application des équations de Lagrange dans la théorie de la viscosité. Bull. Int. Acad. Sci. Cracovie 268–283. 1903Google Scholar
  98. [7]
    Natanson, L.: Sur l’approximation de certaines équations de la théorie de la viscosité. Bull. Int. Acad. Sci. Cracovie 283–311. 1903Google Scholar
  99. [8]
    Zaremba, S.: Remarques sur les travaux de M. Natanson relatifs à la théorie de la viscosité. Bull. Int. Acad. Sci. Cracovie 85–93. 1903Google Scholar
  100. [9]
    Zaremba, S.: Sur une généralisation de la théorie classique de la viscosité. Bull. Int. Acad. Sci. Cracovie 380–403. 1903Google Scholar
  101. [10]
    Zaremba, S.: Sur un problème d’hydrodynamique lié 6. un cas double refraction accidentale dans les liquides et sur les considérations théoriques de M. Natanson relatives à ce phénomène. Bull. Int. Acad. Sci. Cracovie 403–423. 1903Google Scholar
  102. [11]
    Zaremba, S.: Sur une forme perfectionnée de la théorie de la relaxation. Bull. Int. Acad. Sci. Cracovie 594–614. 1903Google Scholar
  103. [12]
    Zaremba, S.: Le principe des mouvements relatifs et les équations de la mécanique physique. Bull. Int. Acad. Sci. Cracovie 614–621. 1903Google Scholar
  104. [1] Duhem, P.: Recherches sur l’élasticité, Première Partie. De l’équilibre et du mouvement des milieux vitreux. Ann. École Normale (3)
    99–141. Repr. Paris: Gauthier-Villars 1906. 1904Google Scholar
  105. [1] Duhem, P.: Recherches sur l’élasticité, Troisième Partie. La stabilité des milieux élastiques. Ann. École Norm. (3)
    143–217. Repr. Paris: Gauthier-Villars 1906. 1905Google Scholar
  106. [2]
    Poincar, H.: Science and Hypothesis. Transl. W. J. G. London. 1905Google Scholar
  107. [3]
    Poynting, J. H.: Radiation-pressure. Phil. Mag. 9, 393–406 = Papers 2, 335–346. 1905Google Scholar
  108. [1] Duhem, P.: Recherches sur l’élasticité. Quatrième Partie. Propriétés générales des ondes dans les milieux visqueux et non-visqueux. Ann. École Normale (3)
    169–225. Repr. Paris: Gauthier-Villars 1906. 1906Google Scholar
  109. [2]
    Jaumann, G.: Elektromagnetische Vorgänge in bewegten Medien. Sitzgsber. Akad. Wiss. Wien (II a) 15, 337–390. 1906Google Scholar
  110. [3]
    Prandtl, L.: Zur Theorie des Verdichtungsstoßes. Z. ges. Turbinenwesen 3, 241–245= Ges. Abh. 2, 935–942. 1906Google Scholar
  111. [1]
    Cosserat, E. and F.: Sur la mécanique générale. C. R. Acad. Sci. Paris 145, 1139–1142. 1907Google Scholar
  112. [1]
    Cosserat, E., and F.: Théorie des Corps Déformables. Paris: Hermann, vi+ 226 pp. Publ. also as pp. 953–1173 of O. D. CxwoLsoN, Traité de Physique, transi. E. Davaux, 2nd ed., 2, Paris 1909. 1909Google Scholar
  113. [2]
    Poynting, J. H.: On pressure perpendicular to the shear-planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. Roy. Soc. Lond. A 82, 546–559 = Papers 2, 358–371. 1909ADSGoogle Scholar
  114. [3]
    Volterra, V.: Sulle equazioni integro-differenziali della teoria dell’elasticità. Rend. Lincei (5) 181, 295–301 = Opere 3, 288–293. 1909Google Scholar
  115. [4]
    Volterra, V.: Equazioni integro-differenziali della elasticità nel caso della isotropia. Rend. Lincei (5) 181, 577–586 = Opere 3, 294–303. 1909Google Scholar
  116. [1]
    Tter, F.: Über die Spannungen in einem ursprünglich geraden, durch Einzelkräfte in stark gekrümmter Gleichgewichtslage gehaltenen Stab. Sitzgsber. Preuss. Akad. Wiss. Teil 2, 895–922. 1910Google Scholar
  117. [2]
    Voigt, W.: Lehrbuch der Kristallphysik. Leipzig u. Berlin: Teubner. 1910Google Scholar
  118. [1]
    Almansi, E.: Sulle deformazioni finite dei solidi elastici isotropi, I. Rend. Accad. Lincei (5A) 201, 705–714. 1911Google Scholar
  119. [2]
    Almansi, E.: Sulle deformazioni finite dei solidi elastici isotropi, Iii. Rend. Accad. Lincei (5A) 202, 289–296. 1911Google Scholar
  120. [3]
    Houston, R. A.: A relation between tension and torsion. Phil. Mag. (6) 22, 740–741. 1911Google Scholar
  121. [4]
    Jaumann, G.: Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzgsber. Akad. Wiss. Wien (II a) 120, 385–530. 1911MATHGoogle Scholar
  122. [1]
    Hamel, G.: Elementare Mechanik. Leipzig u. Berlin: Teubner. 1912Google Scholar
  123. [1]
    Heun, K.: Ansätze und allgemeine Methoden der Systemmechanik. Enz. math. Wiss. 42 (1904–1935), art. 11. 1913Google Scholar
  124. [2]
    Poynting, J. H.: The changes in length and volume of an India-rubber cord when twisted. India-Rubber J., Oct., 4, p. 6 = Papers 2, 424–425. 1913Google Scholar
  125. [1]
    Hellinger, E.: Die allgemeinen Ansätze der Mechanik der Kontinua. Enz. Math. Wiss. 44, 602–694. 1914Google Scholar
  126. ] Armanni, G.: Sulle deformazioni finite dei solidi elastici isotropi. Nouvo Cimento (6) 10, 427–447. 1915CrossRefGoogle Scholar
  127. [1]
    Almansi, E.: La teoria delle distorsioni e le deformazioni finite dei solidi elastici. Rend. Accad. Lincei (5) 25, 191–192. 1916MATHGoogle Scholar
  128. [1]
    Lohr, E.: Entropieprinzip und geschlossenes Gleichungssystem. Denkschr. Akad. Wiss. Wien 93, 339–421. 1917Google Scholar
  129. [1]
    Jaumann, G.: Physik der kontinuierlichen Medien. Denkschr. Akad. Wiss. Wien 95, 461–562. 1918Google Scholar
  130. [1]
    Jouguet, E.: Sur les ondes de choc dans les corps solides. C. R. Acad. Sci. Paris 171, 461–464. 1920MATHGoogle Scholar
  131. [2]
    Jouguet, E.: Sur la célérité des ondes dans les corps solides. C. R. Acad. Sci. Paris 171, 512–515. 1920MATHGoogle Scholar
  132. [3]
    Jouguet, E.: Sur la variation d’entropie dans les ondes de choc des solides élasti¬ques. C. R. Acad. Sci. Paris 171, 789–791. 1920MATHGoogle Scholar
  133. [4]
    Jouguet, E.: Application du principe de Carnot-Clausius aux ondes de choc des solides élastiques. C. R. Acad. Sci. Paris 171, 904–907. 1920MATHGoogle Scholar
  134. [1]
    Jouguet, E.: Notes sur la théorie de l’élasticité. Ann. Toulouse (3) 12, (1920), 47–92. 1921MathSciNetMATHGoogle Scholar
  135. [2]
    WeitzenbÖCK, R.: Zur Tensoralgebra. Math. Z. 10, 80–87. 1921MATHCrossRefGoogle Scholar
  136. [1]
    Ariano, R.: Deformazioni finite dei sistemi continui. Rend. Palermo 48, 97–120. 1924MATHCrossRefGoogle Scholar
  137. [1]
    Ariano, R.: Deformazioni finite di sistemi continui. Memoria 1a. Ann. di Mat. (4) 2, 217–261. 1925MathSciNetCrossRefGoogle Scholar
  138. [2]
    Brillouin, L.: Sur les tensions de radiation. Ann. Physique (10) 4, 528–586. 1925MATHGoogle Scholar
  139. [1]
    Sudria, J.: Contribution k la théorie de l’action euclidienne. Ann. Fac. Sci. Toulouse (3) 17 (1925), 63–152. 1926MathSciNetMATHGoogle Scholar
  140. [1]
    Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity. 4th ed. Cambridge. Reprinted by Dover Publications, New York, 1944. 1927MATHGoogle Scholar
  141. [2]
    Reiner, M., and M. Riwlin: Die Theorie der Strömung einer elastischen Flüssigkeit im Couette-Apparat. Kolloid-Z. 43, 1–5. 1927CrossRefGoogle Scholar
  142. [1]
    Ariano, R.: Deformazioni finite di sistemi continui. Memoria 2 Ann. di Mat. Pura Appl. (4) 5, 55–71. 1928MathSciNetCrossRefGoogle Scholar
  143. [2]
    Farrow, F. D., G. M. Lowe, and S. M. Neale: The flow of starch pastes. Flow at high and low rates of shear. J. Textile Inst. 19, T18 — T31. 1928CrossRefGoogle Scholar
  144. [3]
    Murnaghan, F. D.: On the energy of deformation of an elastic solid. Proc. Nat. Acad. Sci. U.S.A. 14, 889–891. 1928ADSMATHCrossRefGoogle Scholar
  145. [4]
    Rabinowitsch, B.: Über die Viskosität und Elastizität von Sohlen. Z. phys. Chem., Abt. A 145, 1–26. 1928Google Scholar
  146. [1]
    Ariano, R.: Deformazioni finite di sistemi continui. Memoria 3°. Ann. di Mat. Pura Appl. (4) 6, 265–282. 1929MathSciNetCrossRefGoogle Scholar
  147. [2]
    Jaramillo, T. J.: A generalization of the energy function of elasticity theory. Diss. Univ. Chicago. 1929Google Scholar
  148. [3]
    Lichtenstein, L.: Grundlagen der Hydromechanik. Berlin: Springer. (120)Ariano, R.: Deformazioni finite di sistemi continui, isotropi. Rend. Ist. Lombardo (2) 63, 740–754. 1929Google Scholar
  149. [2]
    Mises, R. V.: Über die bisherigen Ansätze in der klassischen Mechanik der Kontinua. Proc. 3rd Int. Congr. Appl. Mech. Stockholm 2, 1–9. 1929Google Scholar
  150. [3]
    Signorini, A.: Sulle deformazioni termoelastiche finite. Proc. 3rd Int. Congr. Appl. Mech. 2, 80–89. 1929Google Scholar
  151. [1]
    Anzelius, A.: Die Viskositätsanomalien der anisotropen Flüssigkeiten. Grundlegende Tatsachen. Uppsala Univ. Arsskr. Mat. Och Naturvet., 1–84. 1931Google Scholar
  152. [2]
    Girault, M.: Essai sur la Viscosité en Mécanique des Fluides. Publ. Sci. Tech. Min. de l’Air, No. 4, Paris. 1931Google Scholar
  153. [3]
    Kaplan, C.: On the strain-energy function for isotropic bodies. Phys. Rev. (2) 38, 1020–1029. 1931ADSCrossRefGoogle Scholar
  154. [4]
    Lampariello, G.: Sull’impossibilità di propagazione ondosa nei fluidi viscosi. Rend. Accad. Lincei (6) 13, 688–691. 1931Google Scholar
  155. [5]
    Mooney, M.: Explicit formulae for slip and fluidity. J. Rheology 2, 210–222. 1931ADSCrossRefGoogle Scholar
  156. [6]
    Murnaghan, F. D.: On finite deformations and the energy of deformation of a non-isotropic medium. Atti Congr. Internaz. Matem. Bologna (1928) 5, 151–153. 1931Google Scholar
  157. [7]
    Weissenberg, K.: Die Mechanik deformierbarer Körper. Abh. Akad. bliss. Berlin No. 2. 1931Google Scholar
  158. [1]
    Bateman, H.: Part I, Ch. 3: General physical properties of a viscous fluid. Part II: Motion of an incompressible viscous fluid. Part IV: Compressible fluids. Report of the Committee on Hydrodynamics. Washington: Bull. Nat. Research Council No. 84. 1932Google Scholar
  159. [2]
    Ceruti, G.: Sopra un’estensione della teoria elastica alla seconda approssimazione. Rend. Ist. Lombardo (2) 65, 997–1012. 1932MATHGoogle Scholar
  160. [3]
    Hohenemser, K., and W. Prager: Fundamental equations and definitions concerning the mechanics of isotropic continua. J. Rheol. 3, 245–256. 1932CrossRefGoogle Scholar
  161. [4]
    Hohenemser, K., and W. Prager: Über die Ansätze der Mechanik isotroper Kontinua. Z. angew. Math. Mech. 12, 216–226. 1932Google Scholar
  162. [5]
    Lamb, H.: Hydrodynamics. 6th ed. Cambridge Univ. Press. Reprinted, Dover Publications, New York, 1945. 1932Google Scholar
  163. [6] Prandtl, L.: Extract from a letter to D. A. Grave, published in D. A. Grave: Physical foundations of hydrodynamics and aerodynamics [in Russian].
    Isv. Akad. Nauk Sssr Otdel mat. est. nauk (Ser. Vii) 1932, 763–782. 1932Google Scholar
  164. [7]
    Signorini, A.: Sollecitazioni iperastatiche. Rend. Ist. Lombardo (2) 65, 1–7. 1932Google Scholar
  165. [1]
    Ariano, R.: L’isotropia nelle deformazione finite. Rend. Ist. Lombardo 66, 1–13, 207–220. 1933Google Scholar
  166. [2]
    Fromm, E.: Stoffgesetze des isotropen Kontinuums, insbesondere bei zähplastischen Verhalten. Ing.-Arch. 4, 432–466. 1933MATHCrossRefGoogle Scholar
  167. [3]
    Oseen, C. W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 833–899. 1933CrossRefGoogle Scholar
  168. [4]
    Signorini, A.: Sulle deformazione finite dei sistemi a trasformazioni reversibili. Rend. Accad. Lincei (6) 18, 388–394. 1933MATHGoogle Scholar
  169. [5]
    Thompson, J. H. C.: On the theory of visco-elasticity, and some problems of the vibrations of visco-elastic solids. Phil. Trans. Roy. Soc. Lond. A 231, 339–407. 1933ADSMATHCrossRefGoogle Scholar
  170. [1]
    DE Backer, S.: Les fluides visqueux et les ondes propageables. C. R. Acad. Sci. Paris 200, 899–901. 1935MATHGoogle Scholar
  171. [2]
    Seth, B. R.: Finite strain in elastic problems. Phil. Trans. Roy. Soc. Lond. (A) 234, 231–264. 1935ADSMATHCrossRefGoogle Scholar
  172. [3]
    Sudria, J.: L’action Euclidienne de Deformation et de Mouvement. Mém. Sci. Phys. No. 29. Paris: Gauther-Villars. 56 pp. (98)Google Scholar
  173. [1]
    DE Backer, S.: Les fluides visqueux et les ondes propageables. Evolution d’un gaz monoatomique et polyatomique. Bull. Acad. Roy. Belg., Cl. Sci. (5) 22, 1284–1295. 1936Google Scholar
  174. [2]
    Halton, P., and G. W. Scott Blair: A study of some physical properties of flour doughs in relation to their bread-making qualities. J. Phys. Chem. 40, 561–580. 1936CrossRefGoogle Scholar
  175. [3]
    Signorini, A.: Trasformazioni termoelastiche finite, caratteristiche dei sistemi differenziali, onde di discontinuità in particolare, onde d’urto e teoria degli esplosivi. Atti Xxiv Riun. Soc. Ital. Progr. Sci. 3, 6–25. 1936Google Scholar
  176. [1]
    DE Backer, S. Les fluides visqueux et les ondes propageables. Bull. Acad. Roy. Belg. Cl. Sci. (5) 23, 59–72, 262–273. 1937Google Scholar
  177. [2]
    Murnaghan, F. D.: Finite deformation of an elastic solid. Amer. J. Math. 59, 235–260. 1937MathSciNetMATHCrossRefGoogle Scholar
  178. [3]
    Van Der Waerden, B. L.: Moderne Algebra I, 2. Aufl. Berlin: Springer. 1937MATHGoogle Scholar
  179. [4]
    Zaremba, S.: Sur une Conception Nouvelle des Forces Intérieures dans un Fluide en Mouvement. Mém. Sci. Math. No. 82. Paris: Gauthier-Villars. 1937Google Scholar
  180. [1]
    Birch, F.: The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan’S theory of finite strain. J. Appl. Phys. 9, 279–288. 1938ADSMATHCrossRefGoogle Scholar
  181. [2]
    Brillouin, L.: Les Tenseurs en Mécanique et en Élasticité. 2nd ed. Paris: Masson 1960. 1938Google Scholar
  182. [3] Kilchevski, N.: A new theory of the mechanics of continuous media [in Ukrainian].
    Zbirnik Inst. Mat. Akad. Nauk Ursr, No. 1, 17–114. 1938Google Scholar
  183. [4]
    Prager, W.: On isotropic materials with continuous transition from elastic to plastic state. Proc. 5th Internat. Congr. Appl. Mech. (Cambridge), pp. 234–237. 1938Google Scholar
  184. [1]
    Kappus, R.: Zur Elastititätstheorie endlicher Verschiebungen. Z. angew. Math. Mech. 19, 271–285, 344–361. 1939Google Scholar
  185. [2]
    Weyl, H.: The Classical Groups, their Invariants and Representations. Princeton Univ. Press. Reprinted 1953. 1939Google Scholar
  186. [1]
    Biot, M.: The influence of initial stress on elastic waves. J. Appl. Phys. 11, 522–530. 1940MathSciNetADSCrossRefGoogle Scholar
  187. [2]
    Born, M., and R. D. Misra: On the stability of crystal lattices, IV. Proc. Cambridge Phil. Soc. 36, 466–478. 1940MathSciNetGoogle Scholar
  188. [3]
    Brillouin, M.: Influence de la Température sur l’Élasticité d’un Solide. Mém. Sci. Math. 99. Paris: Gauthier-Villars. 1940Google Scholar
  189. [4]
    Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592. 1940ADSMATHCrossRefGoogle Scholar
  190. [1]
    Murnaghan, F. D.: The compressibility of solids under extreme pressures. Kar¬man Anniv. Vol. 121–136. 1941Google Scholar
  191. [2]
    Prager, W.: A new mathematical theory of plasticity. Rev. Fac. Sci. Univ. Istan¬bul A 5, 215–226. 1941MathSciNetMATHGoogle Scholar
  192. [3]
    Sakadi, Z.: On the extension of the differential equations of incompressible viscous fluid. Proc. Physico-Math. Soc. Japan (3) 23, 27–33. 1941MathSciNetGoogle Scholar
  193. [4]
    Timoshenko, S. P.: Strength of Materials, II. 2nd ed. New York: Van Nostrand. 1941MATHGoogle Scholar
  194. [1]
    DE Colle, L.: Teorema di minimo relativo a fluidi viscosi generali. Rend. Ist. Lombardo Sci. Lett. Rend., Cl. Sci. Mat. Nat. 75 = (6) 3, 343–352. 1942Google Scholar
  195. [2]
    Finii, B.: Propagazione ondosa nei continui anisotropi. Rend. Ist. Lombardo, Cl. Sci. Mat. Nat. 75 = (3) 6 (1941/42), 630–640. 1942Google Scholar
  196. [3]
    Hay, G. E.: The finite displacement of thin rods. Trans. Amer. Math. Soc. 51, 65–102. 1942MathSciNetGoogle Scholar
  197. [4]
    Prager, W.: Fundamental theorems of a new mathematical theory of plasticity. Duke Math. J. 9, 228–233. 1942MathSciNetMATHGoogle Scholar
  198. [5]
    Sakadi, Z.: On the extension of the differential equations of incompressible fluid, II. Proc. Physico-Math. Soc. Japan (3) 24, 719–722. 1942MathSciNetGoogle Scholar
  199. [6]
    Signorini, A.: Deformazioni elastiche finite: elasticità di 2° grado. Atti 2° Congr. Mat. Ital. 1940, pp. 56–71. 1942MathSciNetGoogle Scholar
  200. [7]
    Tolotti, C.: Sulla più generale elasticità di 2° grado. Rend. Sem. Mat. Univ. Roma (5) 3, 1–20. 1942Google Scholar
  201. [8]
    Zener, C.: Theory of lattice expansion introduced by cold-work. Trans. Amer. Inst. Mining Met. Engrs. 147, 361–364. 1942Google Scholar
  202. [1]
    Merrington, A. C.: Flow of visto-elastic materials in capillaries. Nature, Lond. 152, 663. 1943ADSCrossRefGoogle Scholar
  203. [2]
    Reiner, M.: Ten Lectures on Theoretical Rheology. Jerusalem. (There are later, expanded editions.) 1943Google Scholar
  204. [3]
    Signorini, A.: Trasformazioni termoelastiche finite. Mem. 1°, Ann. di Mat. (4) 22, 33–143. 1943MathSciNetMATHCrossRefGoogle Scholar
  205. [4]
    Tolotti, C.: Orientamenti principali di un corpo elastico rispetto alla sua sollecitazione totale. Mem. Accad. Italia, Cl. sci. mat. nat. (7) 13, 1139–1162. 1943MathSciNetGoogle Scholar
  206. [5]
    Tolotti, C.: Deformazione elastiche finite: onde ordinarie di discontinuità e caso tipico di solidi elastici isotropi. Rend. Mat. e Applic. (5) 4, 33–59. 1943MathSciNetGoogle Scholar
  207. [6]
    Tolotti, C.: Sul potenziale termodinamico dei solidi elastici omogenei ed isotropi per trasformazioni finite. Atti R. Accad. Italia 14, 529–541. 1943Google Scholar
  208. [7]
    Udeschini, P.: Sull’energia di deformazione. Rend. Ist. Lombardo (3) 7 = 76, 25–34. 1943MathSciNetGoogle Scholar
  209. [1]
    Murnaghan, F. D.: The compressibility of media under extreme pressures. Proc. Nat. Acad. Sci. U.S.A. 30, 244–247. 1944MathSciNetADSMATHCrossRefGoogle Scholar
  210. [2]
    Murnaghan, F. D.: On the theory of the tension of the elastic cylinder. Proc. Nat. Acad. Sci. U.S.A. 30, 382–384. 1944MathSciNetADSMATHCrossRefGoogle Scholar
  211. [3]
    Seth, B. R.: On the stress-strain velocity relations in equations of viscous flow. Proc. Indian Acad. Sci. (A) 20, 336–339. 1944MathSciNetMATHGoogle Scholar
  212. [1]
    Murnaghan, F. D.: A revision of the theory of elasticity. Bol. Soc. Mat. Mexicana 2, 81–89. 1945MathSciNetGoogle Scholar
  213. [2]
    Prager, W.: Strain hardening under combined stresses. J. App. Phys. 16, 837–840. 1945MathSciNetADSCrossRefGoogle Scholar
  214. [3]
    Reiner, M. A mathematical theory of dilatancy. Amer. J. Math. 67, 350–362. Reprinted in Rational Mechanics of Materials, Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1945Google Scholar
  215. [4]
    Signorini, A.: Recenti progressi della teoria delle trasformazioni termoelastiche finite. Atti Cony. Mat. Roma 1942, pp. 153–168. 1945MathSciNetGoogle Scholar
  216. [1]
    Cattaneo, C.: Su un teorema fondamentale nella teoria delle onde di discontinuità. Atti Accad. Sci. Lincei Rend., Cl. Sic. Fis. Mat. Nat. (8) 1, 66–72, 728–734. 1946Google Scholar
  217. [2]
    Garner, F. H., and A. H. Nissan: Rheological properties of high-viscosity solutions of long molecules. Nature, Lond. 158, 634–635. 1946ADSCrossRefGoogle Scholar
  218. [3]
    Reiner, M.: The coefficient of viscous traction. Amer. J. Math. 68, 672–680. 1946MathSciNetMATHCrossRefGoogle Scholar
  219. [1]
    Bhagavantam, S., and R. Suryanarayana: Third-order elastic coefficients of crystals. Nature, Lond. 160, 750–751. 1947ADSCrossRefGoogle Scholar
  220. [2]
    Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. (2) 71, 809–824. 1947ADSMATHCrossRefGoogle Scholar
  221. [3]
    Fromm, H.: Laminare Strömung Newtonscher and Maxwellscher Flüssigkeiten. Z. angew. Math. Mech. 25 /27, 146–150. 1947MathSciNetGoogle Scholar
  222. [4]
    Garcia, G.: Ecuaciones exactas y soluciones exactas del movimiento y de las tensiones en los fluidos viscosas. Actas Acad. Ciencias Lima 10, 117–170. 1947Google Scholar
  223. [5]
    Handelman, G. H., C. C. Lin, and W. Prager: On the mechanical behavior of metals in the strain-hardening range. Quart. Appl. Math. 4, 397–407. 1947MathSciNetGoogle Scholar
  224. [6]
    KuTilin, D. I.: Theory of Finite Deformations [in Russian]. Moscow and Lenin¬grad: Ogiz. 275 pp. 1947Google Scholar
  225. [7]
    Oldroyd, J. G.: Rectilinear plastic flow of a Bingham solid, I. Flow between eccentric circular cylinders in relative motion. Proc. Cambridge Phil. Soc. 43, 396–405. 1947MathSciNetMATHCrossRefGoogle Scholar
  226. [8]
    Oldroyd, J. G.: Rectilinear plastic flow of a Bingham solid, II. Flow between confocal elliptic cylinders in relative motion. Proc. Cambridge Phil. Soc. 43, 521–532. 1947MathSciNetMATHGoogle Scholar
  227. [9]
    Rivlin, R. S.: Torsion of a rubber cylinder. J. Appl. Phys. 18, 444–449, 837. 1947CrossRefGoogle Scholar
  228. [10]
    Rivlin, R. S.: Hydrodynamics of non-Newtonian fluids. Nature, Lond. 160, 611–613. 1947MathSciNetADSCrossRefGoogle Scholar
  229. [11]
    Swift, H. W.: Length changes in metals under torsional overstrain. Engineering 163, 253–257. 1947Google Scholar
  230. [12]
    Truesdell, C., and R. N. Schwartz: The Newtonian mechanics of continua. U.S. Naval Ordnance Lab. Memo. 9223. 1947Google Scholar
  231. [13]
    Van Hove, L.: Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues. Proc. Kon. Ned. Akad. Wet. 50, 18–23. 1947MATHGoogle Scholar
  232. [14]
    Viguier, G.: Les équations de la couche limite dans le cas de gradients de vitesse élevés. C. R. Acad. Sci. Paris 224, 713–714. 1947MATHGoogle Scholar
  233. [15]
    Viguier, G.: L’écoulement d’un fluide visqueux avec gradients de vitesse élevés. C. R. Acad. Sci. Paris 224, 1048–1050. 1947MATHGoogle Scholar
  234. [16]
    Viguier, G.: La couche limite de Prandtl avec importants gradients de vitesses. C. R. Acad. Sci. Paris 225, 45–46. 1947MATHGoogle Scholar
  235. [17]
    Weissenberg, K.: A continuum theory of rheological phenomena. Nature, Lond. 159, 310–311. 1947ADSCrossRefGoogle Scholar
  236. [18]
    Wood, G. F., A. H. Nissan, and F. H. Garner: Viscometry of soap-in-hydro¬carbon systems. J. Inst. Petrol. 33, 71–94. 1947Google Scholar
  237. [1]
    Burgers, J. M.: Non-linear relations between viscous stresses and instantaneous rate of deformation as a consequence of slow relaxation. Proc. Kon. Ned. Akad. Wet. 51, 787–792. 1948MathSciNetMATHGoogle Scholar
  238. [2]
    Courant, R., and K. O. Friedrichs: Supersonic Flow and Shock Waves. New York: Interscience Publ. 1948MATHGoogle Scholar
  239. [3]
    Eckart, C.: The thermodynamics of irreversible processes, IV. The theory of elasticity and anelasticity. Phys. Rev. (2) 73, 373–382. 1948MathSciNetADSMATHCrossRefGoogle Scholar
  240. [4]
    Fromm, H.: Laminare Strömung Newtonscher und Maxwellscher Flüssigkeiten. Z. angew. Math. Mech. 28, 43–54. 1948MathSciNetMATHGoogle Scholar
  241. [5]
    Garcl, G.: Sur une formule, cardinale et canonique des tensions internes et sur l’équation cardinale, canonique de mouvement des fluides visqueux. Ann. Soc. Polonaise Math. 21, 107–113. 1948Google Scholar
  242. [6]
    Kuao, R.: Large elastic deformation of rubber. J. Phys. Soc. Japan 3, 312–317. 1948MathSciNetADSCrossRefGoogle Scholar
  243. [7]
    Oldroyd, J. G.: Rectilinear plastic flow of a Bingham solid, Iii. A more general discussion of steady flow. Proc. Cambridge Phil. Soc. 44, 200–213. 1948MathSciNetMATHGoogle Scholar
  244. [8]
    Oldroyd, J. G.: Rectilinear plastic flow of a Bingham solid, IV. Non-steady motion. Proc. Cambridge Phil. Soc. 44, 214–228. 1948MathSciNetMATHGoogle Scholar
  245. [9]
    Reiner, M.: Elasticity beyond the elastic limit. Amer. J. Math. 70, 433–446. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1948Google Scholar
  246. [10]
    Richter, H.: Das isotrope Elastizitätsgesetz. Z. angew. Math. Mech. 28, 205–209. 1948MATHGoogle Scholar
  247. [11]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, I. Fundamental concepts. Phil. Trans. Roy. Soc. Lond. A 240, 459–490. 1948MathSciNetADSMATHCrossRefGoogle Scholar
  248. [12]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, IV. Further developments of the general theory. Phil. Trans. Roy. Soc. Lond. A 241, 379–397. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1948Google Scholar
  249. [13]
    Rivlin, R. S.: A uniqueness theorem in the theory of highly-elastic materials. Proc. Cambridge Phil. Soc. 44, 595–597. 1948MathSciNetMATHGoogle Scholar
  250. [14]
    Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids, I. Proc. Roy. Soc. Lond. 193, 260–281. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1948Google Scholar
  251. [15]
    Rivlin, R. S.: Some applications of elasticity theory to rubber engineering. Proc. 2nd Tech. Conf. (London, June 23–25, 1948 ). Cambridge: Heffer. 1948Google Scholar
  252. [16]
    Rivlin, R. S.: Normal stress coefficient in solutions of macromolecules. Nature, Lond. 161, 567–569. 1948ADSCrossRefGoogle Scholar
  253. [17]
    Stone, M. H.: Generalized Weierstrass approximation theorem. Math. Mag. 21, 167–184, 237–254. 1948Google Scholar
  254. [18]
    Truesdell, C.: A new definition of a fluid. U.S. Naval Ord. Lab. Mem. 9487. 1948Google Scholar
  255. [19]
    Truesdell, C.: On the differential equations of slip flow. Proc. Nat. Acad. Sci. U.S.A. 34, 342–347. 1948MathSciNetADSMATHCrossRefGoogle Scholar
  256. [20]
    Viguier, G.: Quelques remarques sur la couche limite de Prandtl. Son équation dans le cas de gradients de vitesse élevés. Recherche Aeron. No. 1, pp. 7–9. 1948MathSciNetGoogle Scholar
  257. [1]
    Bhagavantam, S., and D. Suryanarayana: Crystal symmetry and physical properties: Application of group theory. Acta Cryst. 2, 21–26. 1949CrossRefGoogle Scholar
  258. [2]
    Freeman, S. M., and K. Weissenberg: Rheology and the constitution of matter. Proc. Intl. Congr. Rheology 1948. Amsterdam: North Holland Publ. Co., pp. II12—II14. 1949Google Scholar
  259. [3]
    Garcia, G.: Ecuaciones cardinales canonicas exactas para los movimientos finitos y las tensiones en los fluidos viscosas. Actas Acad. Ciencias Lima 12, 3–30. 1949Google Scholar
  260. [4]
    Gleyzal, A.: A mathematical formulation of the general continuous deformation problem. Quart. Appl. Math. 6, 429–437. 1949MathSciNetMATHGoogle Scholar
  261. [5]
    Greenberg, H. J.: On the variational principles of plasticity. Grad. Div. Applied Math. Brown Univ. Rep. A 11–54, March. 1949Google Scholar
  262. [6]
    Jahn, H. A.: Note on the Bhagavantam-Suryanarayana method of enumerating the physical constants of crystals. Acta Cryst. 2, 30–33. 1949MathSciNetCrossRefGoogle Scholar
  263. [7]
    Kondo, K.: A proposal of a new theory concerning the yielding of materials based on Riemannian geometry. J. Japan Soc. Appl. Mech. 2, 123–128, 146–151. 1949Google Scholar
  264. [8]
    Milne-Thomson, L. M.: Finite elastic deformations. Proc. 7th Internat. Congr. Appl. Mech. (1948) 1, 33–40. 1949Google Scholar
  265. [9]
    Murnaghan, F. D.: A revision of the theory of elasticity. Anais Acad. Brasil Ci. 21, 329–336. 1949MathSciNetGoogle Scholar
  266. [10]
    Murnaghan, F. D.: The foundations of the theory of elasticity (1947). Non-linear Problems in the Mechanics of Continua, pp. 158–174. New York. 1949Google Scholar
  267. [11]
    Oldroyd, J. G.: Rectilinear flow of non-Bingham plastic solids and non-Newtonian viscous liquids, I. Proc. Cambridge Phil. Soc. 45, 595–611. 1949MathSciNetADSMATHCrossRefGoogle Scholar
  268. [12]
    Pastori, M.: Propagazione ondosa nei continui anisotropi e corrispondenti direzioni principali. Nuovo Cimento (9) 6, 187–193. 1949MathSciNetCrossRefGoogle Scholar
  269. [13]
    Reiner, M.: Relations between stress and strain in complicated systems. Proc. Int. Congr. Rheology 1948. IV-44-IV-63. 1949Google Scholar
  270. [14]
    Richter, H.: Verzerrungstensor, Verzerrungsdeviator, und Spannungstensor bei endlichen Formänderungen. Z. angew. Math. Mech. 29, 65–75. 1949MATHGoogle Scholar
  271. [15]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, V. The problem of flexure. Proc. Roy. Soc. Lond. A 195, 463–473. Reprinted in Problems of Nonlinear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1949Google Scholar
  272. [16]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, VI. Further results in the theory of torsion, shear, and flexure. Phil. Trans. Roy. Soc. Lond. A 242, 173–195. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1949Google Scholar
  273. [17]
    Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids, II. Proc. Cambridge Phil. Soc. 45, 88–91. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1949Google Scholar
  274. [18]
    Rivlin, R. S.: A note on the torsion of an incompressible, highly-elastic cylinder. Proc. Cambridge Phil. Soc. 45, 485–487. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1949Google Scholar
  275. [19]
    Rivlin, R. S.: The normal-stress coefficient in solutions of macro-molecules. Trans. Faraday Soc. 45, 739–748. 1949CrossRefGoogle Scholar
  276. [20]
    Sakadi, Z.: On elasticity problems when the second order terms of the strain are taken into account, II. Mem. Fac. Eng. Nagoya 1, 95–107. 1949Google Scholar
  277. [21]
    Signorini, A.: Trasformazioni termoelastiche finite. Memoria 2’. Ann. di Mat. Pur. Appl. (4) 30, 1–72. 1949MathSciNetMATHCrossRefGoogle Scholar
  278. [22]
    Truesdell, C.: A new definition of a fluid, I. The Stokesian fluid. Proc. 7th Internat. Congr. Appl. Mech. (1948) 2, 351–364. 1949Google Scholar
  279. [23]
    Truesdell, C.: A new definition of a fluid, II. The Maxwellian fluid. U.S. Naval Res. Lab. Rep. No. P-3553. 1949Google Scholar
  280. [24]
    Viguier, G.: Les forces tangentielles de viscosité avec gradients de vitesse élevés. Experientia 5, 397–398. 1949MathSciNetCrossRefGoogle Scholar
  281. [25]
    Viguier, G.: Nouvelles équations de la mécanique des fluides visqueux. Hrvatsko Prirodoslovno Drustvo. Glasnik Mat.-Fiz. Astr. (II) 4, 193–200. 1949MathSciNetMATHGoogle Scholar
  282. [26]
    Weissenberg, K.: Geometry of rheological phenomena (1946–1947). The Principles of Rheological Measurement, pp. 36–65. London. 1949Google Scholar
  283. [27]
    Weissenberg, K.: Abnormal substances and abnormal phenomena of flow. Proc. Intl. Congr. Rheology 1948. Amsterdam: North Holland Publ. Co., pp. I-29-I-46. 1949Google Scholar
  284. [28]
    Weissenberg, K.: Specification of rheological phenomena by means of a rheo¬goniometer. Proc. Intl. Congr. Rheology 1948. Amsterdam: North Holland Publ. Co., pp. II114–II118. 1949Google Scholar
  285. [1]
    Garner, F. H., A. H. Nissan, and G. F. Wood: Thermodynamics and rheological behavior of elastico-viscous systems under stress. Phil. Trans. Roy. Soc. Lond. A 243, 37–66. 1950ADSCrossRefGoogle Scholar
  286. [2]
    Green, A. E., and W. Zerna: Theory of elasticity in general co-ordinates. Phil. Mag. (7) 41, 313–336. 1950MathSciNetMATHGoogle Scholar
  287. [3]
    Green, A. E., and R. T. Shield: Finite elastic deformation of incompressible isotropic bodies. Proc. Roy. Soc. Lond. A 202, 407–419. 1950MathSciNetADSMATHCrossRefGoogle Scholar
  288. [4]
    Goldenblat, I. I.: On a problem in the mechanics of finite deformation of continuous media [in Russian], C. R. Dokl. Acad. Sci. Ssr 70, 973–976. 1950MathSciNetGoogle Scholar
  289. [5]
    Huang, K.: On the atomic theory of elasticity. Proc. Roy. Soc. Lond. A 203, 178–194. 1950ADSMATHCrossRefGoogle Scholar
  290. [6]
    Kondo, K.: On the dislocation, the group of holonomy and the theory of yielding. J. Japan. Soc. Appl. Mech. 3, 107–110. 1950MathSciNetCrossRefGoogle Scholar
  291. [7]
    Kondo, K.: On the fundamental equations of the theory of yielding. J. Japan Soc. Appl. Mech. 3, 184–188. 1950MathSciNetADSCrossRefGoogle Scholar
  292. [8]
    Kondo, K.: The mathematical analyses of the yield point, I. Uniform stress. J. Japan Soc. Appl. Mech. 3, 188–195. 1950MathSciNetCrossRefGoogle Scholar
  293. [9]
    Kondo, K.: Mathematical analyses of the yield point, II. J. Japan Soc. Appl. Mech. 4, 4–8. 1950CrossRefGoogle Scholar
  294. [10]
    LichnÉRowicz, A.: Eléments du Calcul Tensoriel. Paris: Armand Colin. Engl. transi., Elements of Tensor Calculus. New York: John Wiley & Sons. 1950Google Scholar
  295. [11]
    Oldroyd, J. G.: On the formulation of rheological equations of state. Proc. Roy. Soc. Lond. A 200, 523–541. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1950Google Scholar
  296. [12]
    Oldroyd, J. G.: Finite strains in an anisotropic elastic continuum. Proc. Roy. Soc. Lond. A 202, 407–419. 1950MathSciNetCrossRefGoogle Scholar
  297. [13]
    Rivlin, R. S.: On the definition of strain. Some Recent Developments in Rheology, pp. 125–129. London: United Trade Press. 1950Google Scholar
  298. [14]
    Rivlin, R. S.: Some flow properties of concentrated high-polymer solutions. Proc. Roy. Soc. Lond. A 200, 168–176. 1950ADSCrossRefGoogle Scholar
  299. [15]
    Signorini, A.: Un semplice esempio di ‘incompatibilità’ tra la elastostatica classica e la teoria delle deformazioni elastiche finite. Acad. Naz. Lincei Rend. Cl. fis. mat. nat. (8) 8, 276–281. 1950MathSciNetMATHGoogle Scholar
  300. [16]
    Truesdell, C.: A new definition of a fluid, I. The Stokesian fluid. J. Math. Pures Appl. (9) 29, 215–244. 1950MathSciNetMATHGoogle Scholar
  301. [17]
    Weissenberg, K.: Rheology of hydrocarbon gels. Proc. Roy. Soc. Lond. A 200, 183–188. 1950ADSCrossRefGoogle Scholar
  302. [1]
    Fumi, F. G.: Third-order elastic coefficients of crystals. Phys. Rev. (2) 83, 1274–1275. 1951ADSCrossRefGoogle Scholar
  303. [2]
    Green, A. E., and R. T. Shield: Finite extension and torsion of cylinders. Phil. Trans. Roy. Soc. Lond. A 224, 47–86. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1951Google Scholar
  304. [3]
    Greensmith, H. W., and R. S. Rivlin: Measurements of the normal stress effect in solutions of polyisobutylene. Nature, Lond. 168, 664–667. 1951ADSCrossRefGoogle Scholar
  305. [4]
    Ishihara, A., N. Hashitsume, and M. Tatibana: Statistical theory of rubber-like elasticity. IV. Two-dimensional stretching. J. Chem. Phys. 19, 1508–1512. 1951MathSciNetADSCrossRefGoogle Scholar
  306. [5]
    Kondo, K.: Mathematical analyses of the yield point, Iii. Isotropic stress. J. Japan Soc. Appl. Mech. 4, 35–38. 1951MathSciNetCrossRefGoogle Scholar
  307. [6]
    Lodge, A. S.: On the use of convected coordinate systems in the mechanics of continuous media. Proc. Cambridge Phil. Soc. 47, 575–584. 1951MathSciNetMATHGoogle Scholar
  308. [7]
    Mooney, M.: Secondary stresses in viscoelastic flow. J. Colloid Sci. 6, 96–107. 1951CrossRefGoogle Scholar
  309. [8]
    Murnaghan, F. D.: Finite Deformation of an Elastic Solid. New York: John Wiley & Sons. 1951MATHGoogle Scholar
  310. [9]
    Oldroyd, J. G.: The motion of an elastico-viscous liquid contained between coaxial cylinders, I. Quart. J. Mech. Appl. Math. 4, 271–282. 1951MathSciNetMATHCrossRefGoogle Scholar
  311. [10]
    Oldroyd, J. G.: Rectilinear flow of non-Bingham plastic solids and non-Newtonian viscous liquids, II. Proc. Cambridge Phil. Soc. 47, 410–418. 1951MathSciNetMATHGoogle Scholar
  312. [11] Reiner, M.: The theory of cross-elasticity [in Hebrew].
    Hebrew Inst. Tech. Sci. Publ. 4, 15–30. 1951Google Scholar
  313. [12]
    Reiner, M.: The rheological aspect of hydrodynamics. Quart. Appl. Math. 8, 341–349. 1951MathSciNetMATHGoogle Scholar
  314. [13]
    RIvLin, R. S.: Mechanics of large elastic deformations with special reference to -rubber. Nature, Lond. 167, 590–595. 1951ADSCrossRefGoogle Scholar
  315. [14]
    Rivlin, R. S., and D. W. Saunders: Large elastic deformations of isotropic materials, Vii. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. Lond. A 243, 251–288. 1951ADSMATHCrossRefGoogle Scholar
  316. [15]
    Rivlin, R. S., and A. G. Thomas: Large elastic deformations of isotropic materials, Viii. Strain distribution around a hole in a sheet. Phil. Trans. Roy. Soc. Lond. A 243, 289–298. 1951MathSciNetADSCrossRefGoogle Scholar
  317. [16]
    Sips, R.: Propagation phenomena in elastic-viscous media. J. Polymer Sci. 6, 285–293 1951ADSCrossRefGoogle Scholar
  318. [17]
    Truesdell, C.: A new definition of a fluid, II. The Maxwellian fluid. J. Math. Pures Appl. 30, 111–155. 1951MathSciNetMATHGoogle Scholar
  319. [18]
    Viguier, G.: Circulation d’un fluide visqueux incompressible. Bull. Acad. Roy. Belg. Cl. Sci. (5) 37, 397–405. 1951MathSciNetMATHGoogle Scholar
  320. [1]
    Adkins, J. E., and R. S. Rivlin: Large elastic deformations of isotropic materials, IX. The deformation of thin shells. Phil. Trans. Roy. Soc. Lond. A 244, 505–531. 1952MathSciNetADSMATHCrossRefGoogle Scholar
  321. [2]
    Andersson, B.: On the stress-tensor of viscous isotropic fluids. Ark. Fysik 4, 501–503. 1952MATHGoogle Scholar
  322. [3]
    Braun, I., and M. Reiner: Problems of cross-viscosity. Quart. J. Mech. Appl. Math. 5, 42–53. 1952MathSciNetMATHCrossRefGoogle Scholar
  323. [4]
    Fumi, F. G.: Physical properties of crystals: The direct-inspection method. Acta Cryst. 5, 44–48. 1952CrossRefGoogle Scholar
  324. [5]
    Fumi, F. G.: The direct-inspection method in systems with a principal axis of symmetry. Acta Cryst. 5, 691–695. 1952CrossRefGoogle Scholar
  325. [6]
    Fumi, F. G.: Third-order elastic coefficients in trigonal and hexagonal crystals. Phys. Rev. (2) 86, 561. 1952ADSCrossRefGoogle Scholar
  326. [7]
    Gent, A. N., and R. S. Rivlin: Experiments on the mechanics of rubber, I. Eversion of a tube. Proc. Phys. Soc. Lond. B 65, 118–121. 1952ADSCrossRefGoogle Scholar
  327. [8]
    Gent, A. N., and R. S. Rivlin: Experiments on the mechanics of rubber, II. The torsion, inflation, and extension of a tube. Proc. Phys. Soc. Lond. B 65, 487–501. 1952ADSCrossRefGoogle Scholar
  328. [9]
    Gent, A. N., and R. S. Rivlin: Experiments on the mechanics of rubber, Iii. Small torsion of stretched prisms. Proc. Phys. Soc. Lond. B 65, 645–648. 1952ADSCrossRefGoogle Scholar
  329. [10]
    Grad, H.: Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals. Comm. Pure Appl. Math. 5, 455–494. 1952MathSciNetMATHGoogle Scholar
  330. [11]
    Green, A. E., R. S. Rivlin, and R. T. Shield: General theory of small elastic deformations superposed on finite elastic deformations. Proc. Roy. Soc. Lond. A 211, 128–154. 1952MathSciNetADSMATHCrossRefGoogle Scholar
  331. [12]
    Greensmith, H. W.: Flow Properties of High Polymers. Thesis, Univ. London. 1952Google Scholar
  332. [13]
    Kondo, K.: On the geometrical and physical foundation of the theory of yielding. Proc. 2nd Japan Congr. Appl. Mech. pp. 41–47. 1952Google Scholar
  333. [14]
    Markovitz, H.: A property of Bessel functions and its application to the theory of two rheometers. J. Appl. Phys. 23, 1070–1077. 1952MathSciNetADSMATHCrossRefGoogle Scholar
  334. [15]
    Reiner, M.: A possible cross-viscosity effect in air. Bull. Res. Council Israel 2, 65. 1952MathSciNetGoogle Scholar
  335. [16]
    Richter, H.: Zur Elastizitätstheorie endlicher Verformungen. Math. Nachr. 8, 65–73. English transl. in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1952Google Scholar
  336. [17]
    RIvLin, R. S., and D. W. Saunders: The free energy of deformation for vulcanised rubber. Trans. Farady Soc. 48, 200–206. 1952CrossRefGoogle Scholar
  337. [18]
    Rivlin, R. S., and A. G. Thomas: Rupture of rubber, I. Characteristic energy for tearing. J. Polymer Sci. 10, 291–318. 1952ADSGoogle Scholar
  338. [19]
    Roberts, J. E.: The pressure distribution in liquids in laminar shearing motion and comparison with predictions from various theories. British Ministry of Supply Report, August. 1952Google Scholar
  339. [20]
    Truesdell, C.: The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. Anal. 1, 125–300. Corrected reprint, Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. (4, 5, 19A, 28, 42, 45, 53, 54, 56, 64, 66, 68, 82, 82A, 84, 85, 86, 87, 88, 89, 94, 95, 98, 104, 108, 115, 119, 119A, 120, 121, 125 )Google Scholar
  340. [21] Truesdell, C.: Review of Murnaghan [1951, 8].
    Bull. Amer. Math. Soc. 58, 577–579. 1952Google Scholar
  341. [22]
    Truesdell, C.: A program of physical research in classical mechanics. Z. angew. Math. Phys. 11, 79–95. Reprinted along with [ 1952, 20], Intl. Sci. Rev. Ser. New York: Gordon & Breach. 1965. 1952Google Scholar
  342. [23]
    Wang, M. C., and E. Guth: Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 1144–1157. 1952MathSciNetADSCrossRefGoogle Scholar
  343. [1]
    Adkins, J. E., A. E. Green, and R. T. Shield: Finite plane strain. Phil. Trans. Roy. Soc. Lond. A 246, 181–213. 1953MathSciNetADSMATHCrossRefGoogle Scholar
  344. [2]
    Bodaszewski: O niesymetrycznym stanie napieçia i o jego zastosowaniach w mechanice o§rodków ciaglych. Arch. Mech. Stosow. 5,351–396. (This work is characterized by Kaliski, Plochocki, and Rogula [1962, 39] as “absolutely incorrect ”.) 1953Google Scholar
  345. [3]
    Bordoni, P. G.: Sopra le trasformazioni termoelastiche finite di certi solidi orno-genei ed isotropi. Rend. Mat. e Applic. (5) 12, 237–266. 1953MathSciNetGoogle Scholar
  346. [4]
    Bordoni, P. G.: Deduzione di un’equazione di stato dei solidi dalla teoria delle trasformazioni termoelastiche finite. Rend. Accad. Lincei (8) 14, 784–790. 1953MathSciNetMATHGoogle Scholar
  347. [5]
    Bordoni, P. G.: Trasformazioni adiabatiche di ampiezza finita. Ricerca Sci. 23, 1569–1578. 1953MathSciNetGoogle Scholar
  348. [6]
    Ericksen, J. L.: On the propagation of waves in isotropic incompressible perfectly elastic materials. J. Rational Mech. Anal. 2, 329–337. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1953Google Scholar
  349. [7]
    Gilbarg, D., and D. Paolucci: The structure of shock waves in the continuum theory of fluids. J. Rational Mech. Anal. 2, 617–642. 1953MathSciNetMATHGoogle Scholar
  350. [8]
    Green, A. E., and E. W. Wilkes: A note on the finite extension and torsion of a circular cylinder of compressible elastic isotropic material. Quart. J. Mech. Appl. Math. 6, 240–249. 1953MathSciNetMATHCrossRefGoogle Scholar
  351. [9]
    Greensmith, H. W., and R. S. Rivlin: The hydrodynamics of non-Newtonian fluids, Iii. The normal stress effect in high-polymer solutions. Phil. Trans. Roy. Soc. Lond. A 245, 399–429. 1953ADSCrossRefGoogle Scholar
  352. [10]
    Gumbrell, S. M., L. Mullins, and R. S. Rivlin: Departures of the elastic behaviour of rubbers in simple extension from the kinetic theory. Trans. Faraday Soc. 49, 1495–1505. 1953CrossRefGoogle Scholar
  353. [11]
    Hearmon, R. F. S.: “Third-order” elastic constants. Acta Crystal. 6, 331–339. 1953MathSciNetCrossRefGoogle Scholar
  354. [12]
    Hermans, J. J.: Dilute solutions of flexible chain molecules. Flow Properties of Disperse Systems, pp. 199–265. Amsterdam: North Holland Publ. Co. 1953Google Scholar
  355. [13]
    Hughes, D. S., and J. R. Kelly: Second-order elastic deformation of solids. Phys. Rev. (2) 92, 1145–1149. 1953ADSMATHCrossRefGoogle Scholar
  356. [14]
    Krieger, I. M., and H. Elrod: Direct determination of the flow curves of non-Newtonian fluids, II. Shearing rate in the concentric cylinder viscometer. J. Appl. Phys. 27, 134–136. 1953ADSCrossRefGoogle Scholar
  357. [15]
    Lee, E. H., and I. Kanter: Wave propagation in finite rods of viscoelastic materials. J. Appl. Phys. 24, 1115–1122. 1953ADSMATHCrossRefGoogle Scholar
  358. [16]
    Manacorda, T.: Sul legame sforzi-deformazione nelle trasformazioni finite di un mezzo continuo isotropo. Riv. Mat. Univ. Parma 4, 31–42. 1953MathSciNetMATHGoogle Scholar
  359. [17]
    Misicu, M.: Echilibrul mediilor continue cu deformari mari. Stud. Cercet. Mec. Metal. 4, 31–53. 1953MathSciNetGoogle Scholar
  360. [18]
    Mooney, M.: A test of the theory of secondary viscoelastic stress. J. Appl. Phys. 24, 675–678. 1953ADSCrossRefGoogle Scholar
  361. [19]
    Niordsen, F.: Ändliga deformationer inom elasticitetsterion. Inst. Hallfasthetslära Kungl. Tekn. Högskolen Stockholm, Publ. nr. 106. 1953Google Scholar
  362. [20]
    NovozHilov, V. V.: Foundations of the Nonlinear Theory of Elasticity. Trans-lated by F. Bagemihl, H. KoMM, and W. Seidel from a Russian book published in 1948. Rochester: Graylock. 1953Google Scholar
  363. [21]
    Nye, J. F.: Some geometrical relations in dislocated crystals. Acta Metallurg. 1, 153–162. 1953CrossRefGoogle Scholar
  364. [22]
    Pawlowski, J.: Bestimmung des Reibungsgesetzes der nicht-Newtonschen Flüssig¬keiten aus den Viskositätsmessungen mit Hilfe eines Rotationsviskosimeters. Kolloid-Z. 130, 129–131. 1953CrossRefGoogle Scholar
  365. [23]
    Reissner, E.: On a variational theorem for finite elastic deformations. J. Math. Phys. 32, 129–135. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1953Google Scholar
  366. [24]
    Rivlin, R. S.: The solution of problems in second order elasticity theory. J, Rational Mech. Anal. 2, 53–81. Reprinted in Problems of Non-linear Elasticity, Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1953Google Scholar
  367. [25]
    Truesdell, C.: Corrections and additions to The Mechanical Foundations of Elasticity and Fluid Dynamics“. J. Rational Mech. Anal. 2, 593–616. See [1952, 20]. 1953Google Scholar
  368. [1]
    Adkins, J. E.: Some generalizations of the shear problem for isotropic incompres¬sible materials. Proc. Cambridge Phil. Soc. 50, 334–345. 1954MathSciNetMATHGoogle Scholar
  369. [2]
    Adkins, J. E., A. E. Green, and G. C. Nicholas: Two-dimensional theory of elasticity for finite deformations. Phil. Trans. Roy. Soc. Lond. A 247, 279–306. 1954MathSciNetADSMATHCrossRefGoogle Scholar
  370. [3]
    Baker, M., and J. L. Ericksen: Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids. J. Wash. Acad. Sci. 44, 33–35. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1954Google Scholar
  371. [4]
    Browder, F. E.: Strongly elliptic systems of differential equations. Contrib. Th. Partial Diff. Eqns. Annals of Math. Studies No. 33, 15–51. 1954MathSciNetMATHGoogle Scholar
  372. [5]
    Ericksen, J. L.: Deformations possible in every isotropic incompressible perfectly elastic body. Z. angew. Math. Phys. 5, 466–486. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1954Google Scholar
  373. [6]
    Ericksen, J. L.: Review of Truesdell [1953, 25]. Math. Rev. 15, 178. 1954Google Scholar
  374. [7]
    Ericksen, J. L., and R. S. Rivlin: Large elastic deformations of homogeneous anisotropic materials. J. Rational Mech. Anal. 3, 281–301. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1954Google Scholar
  375. [8]
    Green, A. E.: A note on second-order effects in the torsion of incompressible cylinders. Proc. Cambridge Phil. Soc. 50, 488–490. 1954MATHGoogle Scholar
  376. [9]
    Green, A. E., and E. B. Spratt: Second-order effects in the deformation of elastic bodies. Proc. Roy. Soc. Lond. A 224, 347–361. 1954MathSciNetADSMATHCrossRefGoogle Scholar
  377. [10]
    Green, A. E., and E. W. Wilkes: Finite plane strain for orthotropic bodies. J. Rational Mech. Anal. 3, 713–723. 1954MathSciNetMATHGoogle Scholar
  378. [11]
    Green, A. E., and W. Zerna: Theoretical Elasticity. Oxford: Clarendon Press. 1954MATHGoogle Scholar
  379. [12]
    Kondo, K.: On the theory of the mechanical behavior of microscopically non-uniform materials. Res. Assn. Appl. Geometry (Tokyo), Res. Note No. (2) 4, 36 pp. 1954Google Scholar
  380. [13]
    Manacorda, T.: Sopra un principio variazionale di E. Reissner per la statica dei mezzi continui. Boll. Un. Mat. Ital. (3) 9, 154–159. 1954MathSciNetMATHGoogle Scholar
  381. [14]
    Morrey, C. B. jr.: Second order elliptic systems of differential equations. Contrib. Th. Partial Diff. Eqns. Annals of Math. Studies No. 33, 101–159. 1954MathSciNetMATHGoogle Scholar
  382. [15]
    Padden, F. J., and T. W. Dewitt: Some rheological properties of concentrated polyisobutylene solutions. J. Appl. Phys. 25, 1086–1091. 1954ADSCrossRefGoogle Scholar
  383. [16]
    Pawlowski, J.: -Ober eine Erweiterung des Helmholtzschen Prinzips. Kolloid-Z. 138, 6-11. 1954Google Scholar
  384. [17]
    Pilpel, N.: The viscoelastic properties of aqueous soap gels. Trans. Faraday Soc. 50, 1369–1378. 1954CrossRefGoogle Scholar
  385. [18]
    Reiner, M.: Second order effects in elasticity and hydrodynamics. Bull. Res. Council Israel 3, 372–379. 1954MathSciNetGoogle Scholar
  386. [19]
    Rivlin, R. S., and C. Topakoglu: A theorem in the theory of finite elastic deformations. J. Rational Mech. Anal. 3, 581–589. 1954MathSciNetMATHGoogle Scholar
  387. [20]
    Roberts, J. E.: Pressure distribution in liquids in laminar shearing motion and comparison with predictions from various theories. Proc. 2nd Internat. Congr. Rheology 1953, pp. 91–98. New York: Academic Press. 1954Google Scholar
  388. [21]
    Shimazu, Y.: Equation of state of materials composing the earth’s interior. J. Earth Sci. Nagoya Univ. 2, 15–172. 1954Google Scholar
  389. [22]
    Stoppelli, F.: Una generalizzazione di un teorema di Da Silva. Rend. Acad. Sci. Napoli (4) 21, 214–225. 1954MathSciNetGoogle Scholar
  390. [23]
    Stoppelli, F.: Un teorema di esistenza e di unicità relativo alle equazioni del-l’elastostatica isoterma per deformazioni finite. Ricerche mat. 3, 247–267. 1954MathSciNetMATHGoogle Scholar
  391. [24]
    Subba Rao, R., and S. D. Nigam: The effect of cross-viscosity on the performance of full journal bearing without side leakage. Z. angew. Math. Phys. 5, 426–429. 1954MathSciNetGoogle Scholar
  392. [25]
    Torre, C.: Kritik and Ergänzung des Maxwellschen Ansatzes für elastisch-zähe Stoffe. Verdrehung von Stäben als Beispiel. Ost. Ing.-Arch. 8, 55–76. 1954MathSciNetMATHGoogle Scholar
  393. [26]
    Torre, C.: Ergänzung zum Maxwellschen Ansatz für elastisch-zähe Stoffe. Ver¬drehung mit instationärer Spannungsänderung als Beispiel. Kolloid-Z. 138, 11–18. 1954CrossRefGoogle Scholar
  394. [27]
    Truesdell, C.: A new chapter in the theory of the elastica. Proc. First Midwest Conf. Solid. Mech 1953, pp. 52–55. 1954MathSciNetGoogle Scholar
  395. [1]
    Adkins, J. E.: Finite deformation of materials exhibiting curvilinear aeolotropy. Proc. Roy. Soc. Lond. A 229, 119–134. 1955MathSciNetADSMATHCrossRefGoogle Scholar
  396. [2]
    Adkins, J. E.: Some general results in the theory of large elastic deformations. Proc. Roy. Soc. Lond. A 231, 75–90. 1955MathSciNetADSMATHCrossRefGoogle Scholar
  397. [3]
    Adkins, J. E.: A note on the finite plane-strain equations for isotropic incompres¬sible materials. Proc. Cambridge Phil. Soc. 51, 363–367. 1955MathSciNetMATHGoogle Scholar
  398. [4]
    Adkins, J. E., and R. S. Rivlin: Large elastic deformations of isotropic materials, X. Reinforcement by inextensible cords. Phil. Trans. Roy. Soc. Lond. A 248, 201–223. 1955MathSciNetADSMATHCrossRefGoogle Scholar
  399. [5]
    Bilby, B. A., R. Bullough, and E. Smith: Continuous distributions of dis¬locations: a new application of the methods of non-Riemannian geometry. Proc. Roy. Soc. Lond. A 231, 263–273. 1955MathSciNetADSCrossRefGoogle Scholar
  400. [6]
    Bilby, B. A.: Types of dislocation sources. Defects in crystalline solids. Report of conf. at Bristol, 1954, pp. 123–133. London: The Physical Society. 1955Google Scholar
  401. [7] Caprioli, L.: Su un criterio per l’esistenza dell’energia di deformazione. Boll. Un. Mat. Ital. (3)
    481–483. English translation in oundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1955Google Scholar
  402. [8]
    Cotter, B., and R. S. Rivlin: Tensors associated with time-dependent stress. Quart. Appl. Math. 13, 177–182. 1955MathSciNetMATHGoogle Scholar
  403. [9]
    Dewitt, T. W.: A rheological equation of state which predicts non-Newtonian viscosity, normal stresses, and dynamic moduli. J. Appl. Phys. 26, 889–894. 1955MathSciNetADSMATHCrossRefGoogle Scholar
  404. [10]
    Ericksen, J. L.: Eversion of a perfectly elastic spherical shell. Z. angew. Math. Mech. 35, 381–385. 1955MathSciNetGoogle Scholar
  405. [11]
    Ericksen, J. L.: Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys. 34, 126–128. Reprinted in Problems of Nonlinear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1955Google Scholar
  406. [12]
    Ericksen, J. L.: A consequence of inequalities proposed by Baker and Ericksen. J. Wash. Acad. Sci. 45, 268. 1955MathSciNetGoogle Scholar
  407. [13]
    Green, A. E.: Finite elastic deformation of compressible isotropic bodies. Proc. Roy. Soc. Lond. A 227, 271–278. 1955ADSMATHCrossRefGoogle Scholar
  408. [14]
    Jain, M. K.: Boundary-layer effects in non-Newtonian fluids. Z. angew. Math. Mech. 35, 12–16. 1955MATHGoogle Scholar
  409. [15]
    Jain, M. K.: The motion of an infinite cylinder in rotating non-Newtonian liquid Z. angew. Math. Mech. 35, 379–381. 1955MATHGoogle Scholar
  410. [16]
    Kondo, K., and collaborators: Memoirs of the Unifying Study of the Basic Prob¬lems of Engineering Sciences by Means of Geometry, I. Tokyo: Gakujutsu Bunken Fukyu-Kai. 1955Google Scholar
  411. [17]
    Kroupa, F.: Plane deformation in the non-linear theory of elasticity. Czechos]. J. Phys. 5, 18–29. 1955MathSciNetGoogle Scholar
  412. [18]
    Manacorda, T.: Sulla torsione di un cilindro circolare omogeneo e isotropo nella teoria delle deformazioni finite di solidi elastici incomprimibili. Boll. Un. Mat. Ital. (3) 10, 177–189. 1955MathSciNetMATHGoogle Scholar
  413. [19]
    NoLL, W.: On the continuity of the solid and fluid states. J. Rational Mech. Anal 4, 3–81. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York Gordon & Breach 1965. 1955Google Scholar
  414. [20]
    Reiner, M.: The complete elasticity law for some metals according to Poynting’S observations. Appl. Sci. Res. A 5, 281–295. 1955MathSciNetMATHGoogle Scholar
  415. (21]
    Rivlin, R. S.: Further remarks on the stress-deformation relations for isotropic materials. J. Rational Mech. Anal. 4, 681–702. 1955MathSciNetMATHGoogle Scholar
  416. [22]
    Rivlin, R. S.: Plane strain of a net formed by inextensible cords. J. Rational Mech. Anal. 4,. 951–974. 1955Google Scholar
  417. [23]
    Rivlin, R. S., and J. L. Ericksen: Stress-deformation relations for isotropic materials. J. Rational Mech. Anal. 4, 323–425. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1955Google Scholar
  418. [24]
    Sheng, P.-L.: Secondary Elasticity. Chin. Assoc. Adv. Sci. (Taipei) Monograph Series 1, I, No. 1. 1955Google Scholar
  419. [25]
    Signorini, A.: Trasformazioni termoelastiche finite. Memoria 3, Solidi incom¬primibili. Ann. di Mat. Pur. Appl. (4) 39, 147–201. 1955MathSciNetMATHCrossRefGoogle Scholar
  420. [26]
    Stoppelli, F.: Sulla svilluppabilità in serte di potenze di un parametro delle soluzioni delle equazioni dell’elastostatica isoterma. Ricerche Mat. 4, 58–73. 1955MathSciNetMATHGoogle Scholar
  421. [27]
    Thomas, T. Y.: On the structure of the stress-strain relations. Proc. Nat. Acad. Sci. U.S.A. 41, 716–720. 1955MathSciNetADSMATHCrossRefGoogle Scholar
  422. [28]
    Thomas, T. Y.: Combined elastic and Prandtl-Reuss stress-strain relations. Proc. Nat. Acad. Sci. U.S.A. 41, 720–726. 1955MathSciNetADSMATHCrossRefGoogle Scholar
  423. [29]
    Thomas, T. Y.: Kinematically preferred co-ordinate systems. Proc. Nat. Acad. Sci. U.S.A. 41, 762–770. 1955.MathSciNetADSMATHCrossRefGoogle Scholar
  424. [30]
    Thomas, T. Y.: Combined elastic and von Mises stress-strain relations. Proc. Nat. Acad. Sci. U.S.A. 41, 908–910. 1955MathSciNetADSMATHCrossRefGoogle Scholar
  425. [31]
    Truesdell, C.: Hypo-elasticity. J. Rational Mech. Anal. 4, 83–133, 1019–1020. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1955Google Scholar
  426. [32]
    Truesdell, C.: The simplest rate theory of pure elasticity. Comm. Pure Appl. Math. N.Y.U. 8, 123–132. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1955Google Scholar
  427. [33]
    Wilkes, E. W.: On the stability of a circular tube under end thrust. Quart. J. Mech. Appl. Math. 8, 88–100. 1955MathSciNetMATHCrossRefGoogle Scholar
  428. [1]
    Adkins, J. E.: Finite plane deformation of thin elastic sheets reinforced with inextensible cords. Phil. Trans. Roy. Soc. Lond. A 249, 125–150. 1956MathSciNetADSMATHCrossRefGoogle Scholar
  429. [2]
    Bilby, B. A., and E. Smith: Continuous distributions of dislocations, Iii. Proc. Roy. Soc. Lond. A 236, 481–505. 1956MathSciNetADSCrossRefGoogle Scholar
  430. [3]
    Broer, L. F. J.: On the hydrodynamics of visco-elastic fluids. Appl. Sci. Res. A 6 (1956/57), 226–236. 1956MathSciNetADSMATHGoogle Scholar
  431. [4]
    Budiansky, B., and C. E. Pearson: On variational principles and Galerkin’S procedure for non-linear elasticity. Quart. Appl. Math. 14 (1956/57), 328–331. 1956MathSciNetMATHGoogle Scholar
  432. [5]
    Doyle, T. C., and J. L. Ericksen: Nonlinear elasticity. Adv. Appl. Mech. 4, 53–115. 1956MathSciNetCrossRefGoogle Scholar
  433. [6]
    Ericksen, J. L.: Stress deformation relations for solids. Canad. J. Phys. 34, 226–227. 1956MathSciNetADSCrossRefGoogle Scholar
  434. [7]
    Ericksen, J. L.: Overdetermination of the speed in rectilinear motion of non-Newtonian fluids. Quart. Appl. Math. 14, 318–321. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1956Google Scholar
  435. [8]
    Ericksen, J. L., and R. A. Toupin: Implications of Hadamard’S condition for elastic stability with respect to uniqueness theorems. Canad. J. Math. 8, 432–436. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York Gordon & Breach 1965. 1956Google Scholar
  436. [9]
    Green, A. E.: Hypo-elasticity and plasticity. Proc. Roy. Soc. Lond. A 234, 46–59. 1956ADSMATHCrossRefGoogle Scholar
  437. [10]
    Green, A. E.: Hypo-elasticity and plasticity, II. J. Rational Mech. Anal. 5, 725–734. 1956MathSciNetMATHGoogle Scholar
  438. [11]
    Green, A. E.: Simple extension of a hypo-elastic body of grade zero. J. Rational Mech. Anal. 5, 637–642. 1956MathSciNetMATHGoogle Scholar
  439. [12]
    Green, A. E., and R. S. Rivlin: The mechanics of non-linear materials with memory. Brown Univ. Report Cil-17. 1956Google Scholar
  440. [13]
    Green, A. E., and R. S. Rivlin: Steady flow of non Newtonian fluids through tubes. Quart Appl. Math. 14, 299–308. 1956MathSciNetMATHGoogle Scholar
  441. [14]
    Ikenberry, E., and C. Truesdell: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory, I. J. Rational Mech. Anal. 53–54. 1956Google Scholar
  442. [15]
    Koppe, E.: Methoden der nichtlinearen Elastizitätstheorie mit Anwendung auf die dünne Platte endlicher Durchbiegung. Z. angew. Math. Mech. 36, 455–462. 1956MathSciNetMATHGoogle Scholar
  443. [16]
    Lodge, A. S.: A network theory of flow and stress in concentrated polymer solutions. Trans. Faraday Soc. 52, 120–130. 1956CrossRefGoogle Scholar
  444. [17]
    Manacorda, T.: Sul potenziale isotermo nella più generale elasticità di secondo grado per solidi incomprimibili. Ann. di Mat. (4) 40, 77–86. 1956MathSciNetCrossRefGoogle Scholar
  445. [18]
    Narasimhan, M. H. L.: On the steady laminar flow of certain non-Newtonian liquids through an elastic tube. Proc. Indian Acad. Sci. A 43, 237–246. 1956MathSciNetGoogle Scholar
  446. [19]
    Oldroyd, J. G.: Non-Newtonian flow of liquids and solids. Rheology, Theory, and Application 1, Ch. 16. New York: Academic Press. 1956Google Scholar
  447. [20]
    Philippoff, W.: Flow birefringence and stress. J. Appl. Phys. 27, 984–989. 1956ADSCrossRefGoogle Scholar
  448. [21]
    Pearson, C. E.: General theory of elastic stability. Quart. Appl. Math. 14 (1956/57), 133–144. 1956MathSciNetMATHGoogle Scholar
  449. [22]
    Reiner, M.: Phenomenological Macrorheology. Rheology, Theory and Applica¬tions 1, Ch. 2. New York: Academic Press. 1956Google Scholar
  450. [23]
    Rivlin, R. S.: Stress relaxation in incompressible elastic materials at constant deformation. Quart. Appl. Math. 14, 83–89. 1956MathSciNetMATHGoogle Scholar
  451. [24]
    RIvLin, R. S.: Large elastic deformations. Rheology, Theory and Applications 1, Ch. i0. New York: Academic Press. 1956Google Scholar
  452. [25]
    Rivlin, R. S.: Solution of some problems in the exact theory of visco-elasticity. J. Rational Mech. Anal 5, 179–188. 1956MathSciNetMATHGoogle Scholar
  453. [26]
    Seeger, A.: Neuere mathematische Methoden und physikalische Ergebnisse zur Kristallplastizität. Verformung und Fließen des Festkörpers (Koll. Madrid 1955 ). Berlin-Göttingen-Heidelberg: Springer. 1956Google Scholar
  454. [27]
    Srivastava, A. C.: Beltrami motions in non-Newtonian fluids. J. Assoc. Appl. Phys. 3, 69–72. 1956MathSciNetGoogle Scholar
  455. [28]
    Theodorides, P.: Mehrparametrige Zähigkeit als Grundlage einer Quasi-Kon¬tinuumstheorie der Kompressionsfront für mehratomige Gase. Z. angew. Math. Mech. Sonderheft, 538–546. 1956Google Scholar
  456. [29]
    Thomas, T. Y.: Isotropic materials whose deformation and distortion energies are expressible by scalar invariants. Proc. Nat. Acad. Sci. U.S.A. 42, 603–608. 1956ADSMATHCrossRefGoogle Scholar
  457. [30]
    Tiffen, R., and A. C. Stevenson: Elastic isotropy with body force and couple. Quart. J. Mech. Appl. Math. 9, 306–312. 1956MATHCrossRefGoogle Scholar
  458. [31]
    Toupin, R. A.: The elastic dielectric. J. Rational Mech. Anal. 5, 849–915. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1956Google Scholar
  459. [32] Truesdell, C.: Das ungelöste Hauptproblem der endlichen Elastizitätstheorie. Z. angew. Math. Mech. 36, 97-103. Russian transl. in Mekhanika 1 (41), 67-74 (1957).
    English transi. in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1956Google Scholar
  460. [33]
    Truesdell, C.: Hypo-elastic shear. J. Appl. Phys. 27, 441–447. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1956Google Scholar
  461. [34]
    Truesdell, C.: Experience, theory, and experiment. Proc. 6th Hydraulics Conf. Bull. 36, State Univ. Iowa Studies Engr., 3–18. 1956Google Scholar
  462. [35]
    Truesdell, C.: On the pressures and the flux of energy in a gas according to Maxwell’S kinetic theory, II. J. Rational Mech. Anal. 5, 55–128. 1956MathSciNetMATHGoogle Scholar
  463. [36]
    Verma, P. D. S.: Hypo-elastic pure flexure. Proc. Indian Acad. Sci. A 44, 185–192. 1956MATHGoogle Scholar
  464. [37]
    Ziegler, H.: On the concept of elastic stability. Adv. Appl. Mech. 4, 351–403. 1956CrossRefGoogle Scholar
  465. [1]
    Adkins, J. E., and A. E. Green: Plane problems in second-order elasticity theory. Proc. Roy. Soc. Lond. A 239, 557–576. 1957MathSciNetADSMATHCrossRefGoogle Scholar
  466. [2]
    Adkins, J. E.: Cylindrically symmetrical deformations of incompressible elastic materials reinforced with inextensible cords. J. Rational Mech. Anal 5, 189–202. 1957MathSciNetGoogle Scholar
  467. [3]
    Barta, J.: On the non-linear elasticity law. Acta Tech. Acad. Sci. Hung. 18, 55–65. 1957MathSciNetGoogle Scholar
  468. [4]
    Blackburn, W. S., and A. E. Green: Second-order torsion and bending of isotropic elastic cylinders. Proc. Roy. Soc. Lond. A 240, 408–422. 1957MathSciNetADSMATHCrossRefGoogle Scholar
  469. [5]
    Brodnyan, J. G., F. H. Gaskins, and W. Philippoff: On normal stresses, flow curves, flow birefringence, and normal stresses of polyisobutylene solutions. Part II. Experimental. J. Soc. Rheol. 1, 409–118. 1957Google Scholar
  470. [6]
    Chu, Boa-Teh: Thermodynamics of elastic and of some visco-elastic solids and non-linear thermoelasticity. Brown Univ. Div. Eng. Report No. 1, July. 1957Google Scholar
  471. [7]
    Ericksen, J. L.: Characteristic direction for equations of motion of non-Newtonian fluids. Pac. J. Math. 7, 1557–1562. 1957MathSciNetMATHCrossRefGoogle Scholar
  472. [8]
    Green, A. E., and R. S. Rivlin: The mechanics of non-linear materials with memory, Part. I. Arch. Rational Mech. Anal. 1 (1957/58), 1–21, 470. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1957Google Scholar
  473. [9]
    Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5, 229–241. 1957MathSciNetADSMATHCrossRefGoogle Scholar
  474. [10]
    Jain, M. K.: The stability of certain non-Newtonian liquids contained between two rotating cylinders. J. Sci. Engr. Res. 1, 195–202. 1957Google Scholar
  475. [11]
    Manacorda, T.: Sul comportamento meccanico di una classe di corpi naturali. Riv. Mat. Univ. Parma 8, 15–25. 1957MathSciNetMATHGoogle Scholar
  476. [12]
    Manfredi, B.: Sopra la più generale equazione reologica di stato per una classe di solidi naturali. Boll. Un. Mat. Ital. (3) 12, 422–435. 1957MathSciNetMATHGoogle Scholar
  477. [13]
    Markovitz, H.: Normal stress effect in polyisobutylene solutions, II. Classification of rheological theories. Trans. Soc. Rheol. 1, 37–52. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. (108, 113, 115, 116, 119 )Google Scholar
  478. [14]
    Markovitz, H., and R. B. Williamson: Normal stress effect in polyisobutylene solutions, I. Measurements in a cone and plate instrument. Trans. Soc. Rheol 1, 25–36. 1957MATHGoogle Scholar
  479. [15]
    NoLL, W.: On the foundation of the mechanics of continuous media. Carnegie Inst. Tech. Dept. Math. Rep. No. 17, June. 1957Google Scholar
  480. [16]
    Pao, Y.-H.: Hydrodynamic theory for the flow of a visco-elastic fluid. J. Appl. Phys. 28, 591–598. 1957MathSciNetADSMATHCrossRefGoogle Scholar
  481. [17]
    Reichhardt, H.: Vorlesungen über Vektor-und. Tensorrechnung. Berlin: Veb Deutscher Verlag der Wissenschaften. 1957Google Scholar
  482. [18]
    Philippoff, W.: On normal stresses, flow curves, flow birefringence, and normal stresses of polyisobutylene solutions. Part I. Fundamental Principles. Trans. Soc. Rheol. 1, 95–107. 1957CrossRefGoogle Scholar
  483. [19]
    Reiner, M.: A centripetal-pump effect in air. Proc. Roy. Soc. Lond. A 240, 173–188. 1957ADSCrossRefGoogle Scholar
  484. [20]
    Rivlin, R. S.: The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Quart. Appl. Math. 15 (1957/58), 212–215. Correction, Q. Appl. Math. 17 (1959/60), 447 (1960). 1957MathSciNetMATHGoogle Scholar
  485. [21]
    Roberts, J. E.: Normal stress effects in tetralin solutions of polyisobutylene. Nature 179, 487–488. 1957ADSCrossRefGoogle Scholar
  486. [22]
    Smith, G. F., and R. S. Rivlin: The anisotropic tensors. Quart. Appl. Math. 15, 308–314. 1957MathSciNetMATHGoogle Scholar
  487. [23]
    Smith, G. F., and R. S. Rivlin: Stress-deformation relations for anisotropic solids. Arch. Rational Mech. Anal. 1 (1957/58), 107–112. 1957MathSciNetMATHGoogle Scholar
  488. [24]
    Stone, D. E.: On non-existence of rectilinear motion in plastic solids and non-Newtonian fluids. Quart. Appl. Math. 15, 257–262. 1957MathSciNetADSMATHGoogle Scholar
  489. [25]
    Stoppelli, F.: Su un sistema di equazioni integrodifferenziali interessante l’elastostatica. Ricerche Mat. 6, 11–26. 1957MathSciNetMATHGoogle Scholar
  490. [26]
    Stoppelli, F.: Sull’esistenza di soluzioni delle equazioni dell’elastostatica isoterma nel caso di sollecitazioni dotate di assi di equilibrio, I. Ricerche Mat. 6, 241–287. 1957MathSciNetGoogle Scholar
  491. [27]
    Taylor, G. I., and P. G. Saffman: Effects of compressibility at low Reynolds number. J. Aero. Sci. 24, 553–562. 1957MathSciNetMATHGoogle Scholar
  492. [28]
    Theodorides, P. J.: A basic approach to shock front analysis. Univ. Maryland Inst. Fluid Dyn. Appl. Math. Note, January. 1957Google Scholar
  493. [29]
    Thomas, T. Y.: Deformation energy and the stress-strain relations for isotropic materials. J. Math. and Phys. 35, 335–350. 1957MathSciNetMATHGoogle Scholar
  494. [30] Truesdell, C.: Sulle basi della termomeccanica. Rend. Accad. Lincei (8)
    33–88, 158–166. English transi. in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1957Google Scholar
  495. [31]
    Williams, M. C., and R. B. Bird: Steady flow of an Oldroyd visco-elastic fluid in tubes, slits, and narrow annuli. A. I. Ch. E. Journal. 8, 378–382. 1957CrossRefGoogle Scholar
  496. [1]
    Adkins, J. E.: A reciprocal property of the finite plane strain equations. J. Mech. Phys. Solids 6, 267–275. 1958MathSciNetADSMATHCrossRefGoogle Scholar
  497. [2]
    Adkins, J. E.: Dynamic properties of resilient materials: Constitutive equations. Phil. Trans. Roy. Soc. Lond. A 250, 519–541. 1958MathSciNetADSMATHCrossRefGoogle Scholar
  498. [3]
    Adkins, J. E.: A three-dimensional problem for highly elastic materials subject to constraints. Quart. J. Mech. Appl. Math. 11, 88–97. 1958MathSciNetMATHCrossRefGoogle Scholar
  499. [4]
    Angles D’Auriac, P.: Contribution à l’étude de l’élasticité des corps très dé formables. Thèse. Univ. Paris = Arch. Mech. Stosow. 13, 775–824 (1961). 1958Google Scholar
  500. [5] Berg, B. A.: Deformational anisotropy [in Russian].
    Prikl. mat. Mekh. 22, 67–77. English transi., J. Appl. Math. Mech. 22, 90–103. 1958Google Scholar
  501. [6]
    Bernstein, B., and J. L. Ericksen: Work functions in hypo-elasticity. Arch. Rational Mech. Anal. 1 (1957/58), 396–409. 1958MathSciNetMATHGoogle Scholar
  502. [7]
    Bhatnagar, P. L., and S. K. Lakshmana Rao: Problems on the motion of non-Newtonian viscous liquids. Proc. Indian Acad. Sci. A 45, (1957), 161–171. 1958MathSciNetGoogle Scholar
  503. [8]
    Bilby, B. A., R. Bullough, L. R. T. Gardner, and E. Smith: Continuous distributions of dislocations, IV. Single glide and plane strain. Proc. Roy. Soc. Lond. A 244, 538–577. 1958MathSciNetADSCrossRefGoogle Scholar
  504. [9]
    Bilby, B. A., L. R. T. Gardner, and E. Smith: The relation between dislocation density and stress. Acta Metallurg. 6, 29–33. 1958CrossRefGoogle Scholar
  505. [10]
    Bilby, B. A., and L. R. T. Gardner: Continuous distributions of dislocations, V. Twisting under conditions of single glide. Proc. Roy. Soc. Lond. A 247, 52–108. 1958MathSciNetGoogle Scholar
  506. [11]
    Blackburn, W. S.: Second-order effects in the torsion and bending of transversely isotropic incompressible elastic beams. Quart. J. Mech. Appl. Math. 11, 142–158. 1958MathSciNetMATHCrossRefGoogle Scholar
  507. [12]
    Caricato, G.: Sulle trasformazioni di un sistema elastico atte a conservare l’isotropia. Rend. Mat. e Applic. (5) 17, 313–318. 1958MathSciNetGoogle Scholar
  508. [13]
    Criminale W. O., jr., J. L. Ericksen, and G. L. Filby, jr.: Steady shear flow of non-Newtonian fluids. Arch. Rational. Mech. Anal. 1 (1957/58), 410–417. 1958MathSciNetMATHGoogle Scholar
  509. [14]
    Ericksen, J. L.: Hypo-elastic potentials. Quart. J. Mech. Appl. Math. 11, 67–72. 1958MathSciNetCrossRefGoogle Scholar
  510. [15]
    Ericksen, J. L., and C. Truesdell: Exact theory of stress and strain in rods and shells. Arch. Rational Mech. Anal. 1, 296–323. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1958Google Scholar
  511. [16]
    Frank, F. C.: On the theory of liquid crystals. Disc. Faraday Soc. 25, 19–28. (128)Google Scholar
  512. [17]
    Freudenthal, A. M., and H. Geiringer: The mathematical theories of the inelastic continuum. This Encyclopedia, Vol. VI, pp. 229–433. 1958MathSciNetGoogle Scholar
  513. [18] Gent, A. N., and A. G. Thomas: Forms for the stored (strain)
    energy function for vulcanized rubber. J. Polymer Sci. 28, 625–628. 1958CrossRefGoogle Scholar
  514. [19]
    Giesekus, H.: Die rheologische Zustandsgleichung. Rheol. Acta 1 (1958/61), 2–20. 1958CrossRefGoogle Scholar
  515. [20]
    Gold, R. R., and M. Z. V. Krzywoblocki: On superposability and self-superposability conditions for hydrodynamic equations based on continuum, I. J. reine angew. Math. 199, 139–164. 1958MATHGoogle Scholar
  516. [21]
    Nther, W.: Zur Statik und Dynamik des Cosseratschen Kontinuums. Abh. Braunschw. Wiss. Ges. 10, 195–213. 1958MATHGoogle Scholar
  517. [22]
    Halmos, P. R.: Finite Dimensional Vector Spaces, 2nd ed. Princeton Univ. Press. 1958Google Scholar
  518. [23]
    Jain, M. K.: The collapse or growth of a spherical bubble or cavity in certain non-Newtonian liquid. Proc. 1st. Congr. Theor. Appl. Mech. (Kharagpur, 1956 ), pp. 207–212. 1958Google Scholar
  519. [24]
    Jobling, A., and J. E. Roberts: Goniometry of flow and rupture. Rheology Theory and Applications. New York: Academic Press. 2, 503–535. 1958Google Scholar
  520. [25]
    John, F.: On finite deformations of elastic isotropic material. Inst. Math. Sci. New York Univ. Report Imm-Nyu 250. 1958Google Scholar
  521. [26]
    Jung, H.: Zur Theorie der Maxwellschen Flüssigkeiten. Rheol. Acta 1 (1958/61), 280–285. 1958CrossRefGoogle Scholar
  522. [27]
    KoNno, K., and collaborators: Memoirs of the Unifying Study of the Basic Problems in Engineering and Physical Sciences by Means of Geometry, II. Tokyo: Gakujutsu Bunken Fukyu-Kai. 1958Google Scholar
  523. [28]
    KRäNer, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Berlin-Göttingen-Heidelberg: Springer. 1958CrossRefGoogle Scholar
  524. [29]
    Mithal, K. G.: Motion of a non-Newtonian fluid produced by the uniform rotation of a plate. Ganita 9, 95–117. 1958MathSciNetMATHGoogle Scholar
  525. [30]
    Nigam, S. D.: Rotation of an infinite plane lamina in non-Newtonian liquid: Motion started impulsively from rest. Bull. Calcutta Math. Sci. 50, 65–67. 1958MathSciNetMATHGoogle Scholar
  526. [31]
    Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2 (1958/59), 197–226. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1958Google Scholar
  527. [32]
    Oldroyd, J. G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc. Lond. A 245, 278–297. 1958MathSciNetADSMATHCrossRefGoogle Scholar
  528. [33]
    Paria, G.: Love waves in hypoelastic body of grade zero. Quart. J. Mech. Appl. Math. 11, 509–512. 1958MathSciNetMATHCrossRefGoogle Scholar
  529. [34]
    Pipkin, A. C., and R. S. Rivlin: Note on a paper “Further remarks on the stress-deformation relations for isotropic materials.” Arch. Rational Mech. Anal. 1 (1957/58), 469. 1958MathSciNetMATHGoogle Scholar
  530. [35]
    Pipkin, A. C., and R. S. Rivlin: The formulation of constitutive equations in continuum physics. Div. Appl. Math. Brown Univ. Report. Sept. 1958Google Scholar
  531. [36]
    Popper, B., and M. Reiner: Cross-stresses in air. Boundary Layer Research. Berlin-Göttingen-Heidelberg: Springer. 1958Google Scholar
  532. [37]
    PosEY, C. J.: Discussion on open channel flow. Trans. Amer. Soc. Civil Engr. 123, 712–713. 1958Google Scholar
  533. [38]
    Reiner, M.: The centripetal-pump effect in a vacuum pump. Proc. Roy. Soc. Lond. A 247, 152–167. 1958ADSMATHCrossRefGoogle Scholar
  534. [39]
    Reiner, M.: Rheology. This Encyclopedia, Vol. VI, pp. 434–550. 1958MathSciNetGoogle Scholar
  535. [40]
    Rice, M. H., R. G. Mcqueen, and J. M. Walsh: Compression of solids by strong shock waves. Solid State Physics 6, 1–63. 1958CrossRefGoogle Scholar
  536. [41]
    Sakadi, Z.: Stationary motion of viscous fluid around a rotating solid sphere. Mem. Fac. Eng. Nagoya 10, 42–45. 1958Google Scholar
  537. [42]
    Sharma, S. K.: Propagation of sound waves in visco-elastic compressible fluids. J. Sci. Engr. Res. 2, 253–258. 1958Google Scholar
  538. [43]
    Signorini, A.: Estensione delle formole di Almansi a sistemi elastici anisotropi. Rend. Accad. Lincei (8) 25, 246–253. 1958MathSciNetMATHGoogle Scholar
  539. [44]
    Smith, G. F., and R. S. Rivlin: The strain-energy function for anisotropic elastic materials. Trans. Amer. Math. Soc. 88, 175–193. 1958MathSciNetMATHCrossRefGoogle Scholar
  540. [4,5]
    Stoppelli, F.: Sull’esistenza di soluzioni delle equazioni dell’elastostatica iso¬terma nel caso di sollecitazioni dotate di assi di equilibrio, II, Iii. Ricerche Mat. 7, 71–101, 138–152. 1958Google Scholar
  541. [46]
    Srivastava, A. C.: The flow of a non-Newtonian liquid near a stagnation point. Z. angew. Math. Phys. 9, 80–84. 1958MATHGoogle Scholar
  542. [47]
    Srivastava, A. C.: Rotation of a plane lamina in non-Newtonian fluids. Bull. Calcutta Math. Soc. 50, 57–64. 1958MathSciNetMATHGoogle Scholar
  543. [48]
    Theodorides, P.: Parallel effects of bulk viscosity and time lag in kinetics of non-monatomic fluids. Z. angew. Math. Phys. 96, 668–686. 1958MathSciNetGoogle Scholar
  544. [49]
    Treloar, L. R. G.: The Physics of Rubber Elasticity. 2nd ed. Oxford Univ. Press. 1958Google Scholar
  545. [50]
    Verma, P. D. S.: Deformation energy for hypoelastic materials of grade zero. J. Sci. Engr. Res. 2, 251–252. 1958Google Scholar
  546. [51]
    Verma, P. D. S.: Steady flow of linear fluent material past a fixed sphere. J. Assoc. Appl. Physicists 5, 6–9. 1958Google Scholar
  547. [1]
    Capriz, G.: Sui casi di “incompatibilità” tra l’elastostatica classica e la teoria delle deformazioni elastiche finite. Riv. Mat. Univ. Parma 10, 119–129. 1959MathSciNetMATHGoogle Scholar
  548. [2]
    Coleman, B. D., and W. NoLL: On certain steady flows of general fluids. Arch. Rational Mech. Anal. 3, 289–303. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1959Google Scholar
  549. [3]
    Coleman, B. D., and W. NoLL: On the thermostatics of continuous media. Arch. Rational Mech. Anal. 4, 97–128. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1959Google Scholar
  550. [4]
    Coleman, B. D., and W. NoLL: Helical flow of general fluids. J. Appl. Phys. 30, 1508–1512. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1959Google Scholar
  551. [5]
    Dana, J. S.: Dana’S manual of mineralogy, 17th ed., revised by C. S. Hurlbut, jr. New York: John Wiley. 1959Google Scholar
  552. [6]
    Dewey, J.: Strong shocks and stress-strain relations in solids. Aberdeen Proving Ground Ballistic Res. Lab. Rep. No. 1074. 1959Google Scholar
  553. [7]
    Ericksen, J. L.: Secondary flow phenomena in non-linear fluids. Tappi 42, 773–775. 1959Google Scholar
  554. [8]
    Genensky, S. M., and R. S. Rivlin: Infinitesimal plane strain in a network of elastic cords. Arch. Rational Mech. Anal. 4, 30–44. 1959MathSciNetGoogle Scholar
  555. [9]
    Gold, R. R., and M. Z. V. Krzywoblocki: On superposability and self-super¬posability conditions for hydrodynamic equations based on continuum, II. J. reine angew. Math. 200, 140–169. 1959Google Scholar
  556. [10]
    Green, A. E., R. S. R.vLin, and A. J. M. Spencer: The mechanics of non-linear materials with memory, Part II. Arch. Rational Mech. Anal. 3, 82–90. 1959ADSMATHCrossRefGoogle Scholar
  557. [11]
    Green, A. E., and A. J. M. Spencer: The stability of a circular cylinder under finite extension and torsion. J. Math. Phys. 37, 316–338. 1959MathSciNetMATHGoogle Scholar
  558. [12]
    Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7, 209–225. 1959MathSciNetADSMATHCrossRefGoogle Scholar
  559. [13]
    Jain, M. K.: Problems of cross-elasticity Proc. 2nd. Congr. Theor. Appl. Mech. (New Delhi, 1956 ), pp. 81–86. 1959Google Scholar
  560. [14]
    Jobling, A., and J. E. Roberts: Flow testing of viscoelastic materials. Design and calibration of the Roberts-Weissenberg model R8 rheogoniometer. J. Polymer Sci. 36, 421–431. 1959ADSCrossRefGoogle Scholar
  561. [15]
    Jobling, A., and J. E. Roberts: An investigation, with the Weissenberg rheo¬goniometer, of the stress distribution in flowing polyisobutylene solutions at various concentrations and molecular weights. J. Polymer Sci. 36, 433–441. 1959ADSCrossRefGoogle Scholar
  562. [16]
    Kotaka, T.: Note on the normal stress effect in the solution of rodlike macro¬molecules. J. Chem. Phys. 30, 1566–1567. 1959ADSCrossRefGoogle Scholar
  563. [17]
    KRÖNer, E., u. A. Seeger: Nicht-lineare Elastizitätstheorie der Versetzungen and Eigenspannungen. Arch. Rational Mech. Anal. 3, 97–119. 1959MathSciNetADSMATHCrossRefGoogle Scholar
  564. [18]
    Langlois, W. E., and R. S. Rivlin: Steady flow of slightly visco-elastic fluids. Brown Univ. D.A.M. Tech. Rep. No. 3,. December. 1959Google Scholar
  565. [19]
    Manacorda, T.: Sulla propagazione di onde ordinarie di discontinuità nella elasticità di secondo grado per solidi incompribili. Riv. Mat. Univ. Parma 10, 19–33. 1959MathSciNetMATHGoogle Scholar
  566. [20]
    Oldroyd, J. G.: Complicated rheological properties. Rheology of Disperse Systems, pp. 1–15. New York, etc.: Pergamon. 1959Google Scholar
  567. [21]
    Pipkin, A. C., and R. S. Rivlin: The formulation of constitutive equations in continuum physics, I. Arch. Rational Mech. Anal. 4 (1959/60), 129–144. 1959MathSciNetADSMATHCrossRefGoogle Scholar
  568. [22]
    Reiner, M.: The physics of air viscosity as related to gas-bearing design. First Intl. Sympos. Gas-Lub. Bearings, Off. Naval Res., Washington. 1959Google Scholar
  569. [23]
    RIvLin, R. S.: The constitutive equations for certain classes of deformations. Arch. Rational. Mech. Anal 3, 304–311. 1959MathSciNetADSCrossRefGoogle Scholar
  570. [24]
    Rivlin, R. S.: The deformation of a membrane formed by inextensible cords. Arch. Rational Mech. Anal. 2 (1958/59), 447–476. 1959MathSciNetGoogle Scholar
  571. [25]
    Rivlin, R. S.: Mathematics and rheology, the 1958 Bingham Medal Address. Physics Today 12, 32–34, 36. 1959CrossRefGoogle Scholar
  572. [26]
    Seeger, A., u. E. Mann: Anwendung der nicht-linearen Elastizitätstheorie auf Fehlstellen in Kristallen. Z. Naturforsch. 14a, 154–164. 1959MathSciNetADSMATHGoogle Scholar
  573. [27]
    Serrin, J.: Mathematical principles of classical fluid mechanics. This Encyclopedia, Vol. Viii, Part I, pp. 125–263. 1959Google Scholar
  574. [28]
    Serrin, J.: The derivation of stress-deformation relations for a Stokesian fluid. J. Math. Mech. 8, 459–470. 1959MathSciNetMATHGoogle Scholar
  575. [29]
    Serrin, J.: Poiseuille and Couette flow of non-Newtonian fluids. Z. angew. Math. Mech. 39, 295–299. 1959MathSciNetMATHGoogle Scholar
  576. [30]
    Sharma, S. K.: Rotation of a plane lamina in a visco-elastic liquid. Appl. Sci. Res. A 9 (1959/60), 43–52. 1959MATHGoogle Scholar
  577. [31]
    Sharma, S. K.: Visco-elastic steady flow. Z. angew. Math. Mech. 39, 313–322. 1959MATHGoogle Scholar
  578. [32]
    Sharma, S. K.: Flow of a visco-elastic liquid near a stagnation point. J. Phys. Soc. Japan 14, 1421–1425. 1959MathSciNetADSCrossRefGoogle Scholar
  579. [33]
    Spencer, A. J. M., and R. S. Rivlin: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Rational Mech. Anal. 2 (1958/59), 309–336. 1959MathSciNetMATHGoogle Scholar
  580. [34]
    Spencer, A. J. M., and R. S. Rivlin: Finite integrity bases for five or fewer symmetric 3 x 3 matrices. Arch. Rational Mech. Anal. 2 (1958/59), 435–446. 1959MathSciNetMATHGoogle Scholar
  581. [35]
    Spencer, A. J. M.: On finite elastic deformations with a perturbed strain-energy function. Quart. J. Mech. Appl. Math. 12, 129–145. 1959MathSciNetMATHCrossRefGoogle Scholar
  582. [36]
    Srivastava, A. C.: Superposition in non-Newtonian fluids. Proc. 2nd Congr. Theor. Appl. Mech. (New Delhi, 1956 ), pp. 187–194. 1959Google Scholar
  583. [37]
    Truesdell, C.: The rational mechanics of materials — past, present, future. Applied Mech. Rev. 12, 75–80. Corrected reprint, Applied Mechanics Surveys. Washington: Spartan Books. 1965. 1959Google Scholar
  584. [38]
    Urbanowski, W.: Small deformations superposed on finite deformations of a curvilinearly orthotropic body. Arch. Mech. Stosow. 11, 223–241. 1959MathSciNetMATHGoogle Scholar
  585. [39]
    Verma, P. D. S.: Hypo-elastic strain in rotating shafts and spherical shells. Proc. 2nd Congr. Theor. Appl. Mech. (New Delhi, 1956 ), pp. 99–110. 1959Google Scholar
  586. [40]
    Yamamoto, M.: Phenomenological theory of visco-elasticity of three dimensional bodies. J. Phys. Soc. Japan 14, 313–330. 1959MathSciNetADSCrossRefGoogle Scholar
  587. [41]
    Zahorski, S.: A form of the elastic potential for rubber-like materials. Arch. Mech. Stosow. 11, 613–618. 1959MathSciNetGoogle Scholar
  588. [1]
    Adams, N.: Measurements of pressure gradients in cone-and-plate and in parallel plate viscometers. Rheol. Abstr. 3, No. 3, 28–30. 1960Google Scholar
  589. [2]
    Adkins, J. E.: Symmetry relations for orthotropic and transversely isotropic materials. Arch. Rational Mech. Anal. 4, 193–213. 1960MathSciNetMATHGoogle Scholar
  590. [3]
    Adkins, J. E.: Further symmetry relations for transversely isotropic materials. Arch. Rational Mech. Anal. 5, 263–274. 1960MathSciNetMATHGoogle Scholar
  591. [4]
    Aero, E. L., and E. V. Kuvshinskii: Fundamental equations of the theory of elastic media with rotationally interacting particles [in Russian]. Fizika Tverdogo Tela 2, 1399–1409. English Transi. Soviet Physics Solid State 2, 1272–1821 (1961).Google Scholar
  592. [5]
    Barenblatt, G. I., Iu. P. Zheltov, and I. N. Kochina: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). Pmm 24, 1286–1303 (Transl. of Priklad. Mat. Mekh. 24, 852–864). 1960Google Scholar
  593. [6]
    Bergen, J. T.: Stress relaxation of polymeric materials in combined torsion and tension. Visco-elasticity: Phenomenological Aspects, pp. 108–132. New York: Academic Press. 1960Google Scholar
  594. [7]
    Bergen, J. T., D. C. Messersmith, and R. S. Rivlin: Stress relaxation for biaxial deformation of filled high polymers. J. Appl. Polymer Sci. 3, 153–167. 1960CrossRefGoogle Scholar
  595. [8]
    Bernstein, B.: Hypo-elasticity and elasticity. Arch. Rational Mech. Anal. 6, 89–104. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1960Google Scholar
  596. [9]
    Bhagavantam, S.: Third order elasticity. Proc. 3rd Congr. Theor. Appl. Mech. (Bangalore, 1957 ), pp. 25–30. 1960Google Scholar
  597. [10]
    Bhagavantam, S., and E. V. Chelam: Elastic behavior of matter under very high pressures. Uniform compression. Proc. Indian Acad. Sci. 52, 1–19. 1960MathSciNetMATHGoogle Scholar
  598. [11]
    Bhagavantam, S., and E. V. Chelam: Elastic behavior of matter under very high pressures. General deformation. J. Indian Inst. Sci. 42, 29–40. 1960MathSciNetGoogle Scholar
  599. [12]
    Bhatnagar, P. L., and S. K. Lakshmana Rao: Steady motion of non-Newtonian fluids in tubes. Proc. 3rd. Congr. Theor. Appl. Mech. (Bangalore, 1957 ), pp. 225–234. 1960Google Scholar
  600. [13]
    Bilby, B. A.: Continuous distributions of dislocations. Progress in Solid Mechanics 1, 329–398. 1960MathSciNetGoogle Scholar
  601. [14]
    Bird, R. B.: New variational principle for incompressible non-Newtonian flow. Phys. Fluids 3, 539–541. Comment, ibid. 5, 502 (1962). 1960Google Scholar
  602. [15]
    Chelam, E. V.: Elastic behavior of matter under high pressures. Simple shear. J. Indian Inst. Sci. 42, 41–46. 1960MathSciNetGoogle Scholar
  603. [16]
    Chelam, E. V.: Elastic behavior of matter under very high pressures. Considerations of stability. J. Indian Inst. Sci. 42, 101–107. 1960MathSciNetGoogle Scholar
  604. [17]
    Coleman, B. D., and W. NoLL: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rational Mech. Anal. 6, 355–370. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1960Google Scholar
  605. [18]
    Ericksen, J. L.: Anisotropic fluids. Arch. Rational Mech. Anal. 4 (1959/60), 231–237. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1960Google Scholar
  606. [19]
    Ericksen, J. L.: Transversely isotropic fluids. Kolloid-Z. 173, 117–122. 1960CrossRefGoogle Scholar
  607. [20]
    Ericksen, J. L.: Theory of anisotropic fluids. Trans. Soc. Rheol. 4, 29–39. 1960MathSciNetCrossRefGoogle Scholar
  608. [21]
    Ericksen, J. L.: A vorticity effect in anisotropic fluids. J. Polymer Sci. 47, 327–331. 1960ADSCrossRefGoogle Scholar
  609. [22]
    Ericksen, J. L.: The behavior of certain visco-elastic materials in laminar shearing motions. Visco-elasticity: Phenomenological Aspects, pp. 77–91. New York: Academic Press. 1960Google Scholar
  610. [23]
    Foux, A., and M. Reiner: Extension of metal wires in simple torsion. Technical Rep. Technion Res. Devel. Found. 1960Google Scholar
  611. [24]
    Fredrickson, A. G.: Helical flow of an annular mass of visco-elastic fluid. Chem. Engr. Sci. 11, 252–259. 1960Google Scholar
  612. [25]
    Genensky, S. M.: A general theorem concerning the stability of a particular non-Newtonian fluid. Quart. Appl. Math. 18 (1960/61), 245–250. 1960MathSciNetMATHGoogle Scholar
  613. [26]
    Green, A. E., and J. E. Adkins: Large Elastic Deformations and Non-linear Continuum Mechanics. Oxford: Clarendon Press. 1960MATHGoogle Scholar
  614. [27]
    Green, A. E., and R. S. Rivlin: The mechanics of non-linear materials with memory. Part III. Arch. Rational Mech. Anal. 4 (1959/60), 387–404. 1960MathSciNetMATHGoogle Scholar
  615. [28]
    Grioli, G.: Elasticità asimmetrica. Annali di Mat. Pura Appl. (4) 50, 389–417. Summary, Proc. 10th Intl. Congr. Appl. Mech. Stresa 1960, pp. 252–254 (1962). 1960Google Scholar
  616. [29]
    Jain, M. K.: On rotational instability in visco-elastic liquids. Proc. 3rd. Congr. Theor. Appl. Mech. (Bangalore, 1957 ), pp. 217–224. 1960Google Scholar
  617. [30]
    JoIin, F.: Plane strain problems for a perfectly elastic material of harmonic type. Communs. Pure Appl. Math. 13, 239–296. 1960Google Scholar
  618. [31]
    Johnson, M. W.: Some variational theorems for non-Newtonian flow. Phys. Fluids 3, 871–878. 1960MathSciNetADSCrossRefGoogle Scholar
  619. [32]
    Jones, J. R.: Flow of a non-Newtonian fluid in a curved pipe. Quart. J. Mech. Appl. Math. 13, 428–443. 1960MathSciNetMATHCrossRefGoogle Scholar
  620. [33]
    Kapur, J. N.: Some problems in hydrodynamics of non-Newtonian viscous liquids with variable coefficient of cross-viscosity. Proc. Natl. Inst. Sci. India A 25, (1959), 231–235.MathSciNetMATHGoogle Scholar
  621. [34]
    Knowles, J. A.: Large amplitude oscillations of a tube of incompressible elastic material. Quart. Appl. Math. 18, 71–77. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1960Google Scholar
  622. [35]
    KRÖNer, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspan¬nungen. Arch. Rational Mech. Anal. 4, (1959/60), 273–334. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1960Google Scholar
  623. [36]
    Lodge, A. S.: On the methods of measuring normal stress differences in shear flow. Rheol. Abstr. 3, No. 3, 21–23. 1960Google Scholar
  624. [37]
    Mithal, K. G.: Problems related to non-Newtonian fluids. Thesis. Lucknow Univ. 1960Google Scholar
  625. [38]
    Narasimhan, M. N. L.: Mechanics of flow of real fluids through flexible tubes. J. Sci. Engr. Res. 4, 91–104. 1960Google Scholar
  626. [39]
    Oberoi, M. M., and J. N. Kapur: On axially-symmetric non-Newtonian flows. Bull. Calcutta Math. Soc. 52, 165–172. 1960MATHGoogle Scholar
  627. [40]
    Pfleiderer, H., A. Seeger, H. E. KRÖNer: Nichtlineare Elastizitätstheorie geradliniger Versetzungen. Z. Naturforsch. 15a, 758–772. 1960ADSMATHGoogle Scholar
  628. [41]
    Pipkin, A. C., and R. S. Rivlin: Electrical conduction in deformed isotropic materials. J. Math. Phys. 1, 127–130. 1960MathSciNetADSMATHCrossRefGoogle Scholar
  629. [42]
    Rajagopal, E. S.: The existence of interfacial couples in infinitesimal elasticity. Ann. Physik (7) 6, 192–201. 1960MathSciNetADSMATHCrossRefGoogle Scholar
  630. [43]
    Rathna, S. L.: Superposability of steady axi-symmetrical flows in a non-New¬tonian fluid. Proc. Indian Acad. Sci. A 51, 155–163. 1960MathSciNetMATHGoogle Scholar
  631. [44]
    Rathna, S. L.: Couette and Poiseuille flow in non-Newtonian fluids. Proc. Nat. Inst. Sci. India A 26, 392–399. 1960MathSciNetGoogle Scholar
  632. [45]
    Reiner, M.: Cross stresses in the laminar flow of liquids. Phys. Fluids 3, 427–432. 1960MathSciNetADSMATHCrossRefGoogle Scholar
  633. [46]
    Rivlix, R. S.: The formulation of constitutive equations in continuum physics, II. Arch. Rational Mech. Anal. 4 (1959/60), 262–272. 1960Google Scholar
  634. [47]
    Rivlin, R. S.: Constitutive equations for classes of deformations. Viscoelasticity: Phenomenological Aspects, pp. 93–108. New York: Academic Press. 1960Google Scholar
  635. [48]
    RIvLin, R. S.: Some topics in finite elasticity. Structural Mechanics, pp. 169–198. Oxford etc: Pergamon. 1960Google Scholar
  636. [49]
    Seeger, A., u. O. Buck: Die experimentelle Ermittlung der elastischen Konstanten höherer Ordnung. Z. Naturforsch. 15a, 1056–1067. 1960MathSciNetADSMATHGoogle Scholar
  637. [50]
    Sirotin, Yu. I.: Anisotropie tensors [in Russian]. Dokl. Akad. Nauk Sssr 133, 321–324. English Transl., Soviet Phys. Doklady 5, 774–777 (1961).MathSciNetADSGoogle Scholar
  638. [51] Sirotin, Yu. I.: The construction of tensors with specified symmetry [in Russian].
    Kristallografia 5, 171–179. English Transl., Soviet Phys. Cryst. 5, 157–165. 1960Google Scholar
  639. [52]
    Smith, G. F.: On the minimality of integrity bases for symmetric 3 X 3 matrices. Arch. Rational Mech. Anal. 5, 382–389. 1960MATHGoogle Scholar
  640. [53]
    Spencer, A. J. M., and R. S. Rivlin: Further results on the theory of matrix polynomials. Arch. Rational Mech. Anal. 4 (1959/60), 214–230. 1960MathSciNetMATHGoogle Scholar
  641. [54]
    Srivastava, A. C.: Rotatory oscillation of an infinite plate in non-Newtonian fluids. Appl. Sci. Res. A’9 (1959/60), 369–373. 1960Google Scholar
  642. [55]
    Toupin, R. A.: Stress tensors in elastic dielectrics. Arch. Rational Mech. Anal. 5, 440–452. 1960MathSciNetMATHGoogle Scholar
  643. [56]
    Toupin, R. A., and R. S. Rivlin: Dimensional changes in crystals caused by dislocations. J. Mathematical Phys. 1, 8–15. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1960Google Scholar
  644. [57]
    Truesdell, C.: The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788. L. Euleri Opera Omnia (2) 112. Zürich: Füssli. 1960Google Scholar
  645. [58]
    Truesdell, C.: Modern theories of materials. Trans. Soc. Rheol. 4, 9–22. 1960MathSciNetCrossRefGoogle Scholar
  646. [59]
    Walters, K.: The motion of an elastico-viscous liquid contained between concentric spheres. Quart. J. Mech. Appl. Math. 13, 325–333. 1960MathSciNetMATHCrossRefGoogle Scholar
  647. [60] Walters, K.: The motion of an elastico-viscous liquid contained between co¬axial cylinders (II).
    Quart. J. Mech. Appl. Math. 13, 444–461. 1960Google Scholar
  648. [1]
    Adkins, J. E., and A. E. Green: The finite flexure of an aeolotropic elastic cuboid. Arch. Rational Mech. Anal. 8, 9–14. 1961MathSciNetMATHGoogle Scholar
  649. [2]
    Adkins, J. E.: Large elastic deformation. Progress in Solid Mech. 2, 2–60. 1961Google Scholar
  650. [3]
    Bernstein, B.: Remarks on the materials of the rate type and the principle of determinism. Trans. Soc. Rheol. 5, 35–40. 1961CrossRefGoogle Scholar
  651. [4]
    Bhatnagar, P. L.: On two-dimensional boundary layer in non-Newtonian fluids with constant coefficients of viscosity and cross-viscosity. Proc. Indian Acad. Sci. 53, 95–97. 1961MathSciNetMATHGoogle Scholar
  652. [5]
    Coleman, B. D., and W. Noll: Recent results in the continuum theory of visco¬elastic fluids. Ann. N.Y. Acad. Sci. 89, 672–714. 1961MathSciNetADSMATHCrossRefGoogle Scholar
  653. [6]
    Coleman, B. D., and W. Noll: Normal stresses in second-order viscoelasticity. Trans. Soc. Rheol. 5, 41–46. 1961MathSciNetCrossRefGoogle Scholar
  654. [7]
    Coleman, B. D., and W. NoLL: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239–249. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1961Google Scholar
  655. [8]
    Corneliussen, A. H., and R. T. Shield: Finite deformation of elastic membranes with application to the stability of an inflated and extended tube. Arch. Rational Mech. Anal. 7, 273–304. 1961MathSciNetMATHGoogle Scholar
  656. [9]
    Dahler, J. S., and L. E. Scriven: Angular momentum of continua. Nature, Lond. 192, 36–37. 1961ADSCrossRefGoogle Scholar
  657. [10]
    Datta, S. K.: On the steady motion of an idealized elastico-viscous liquid through channels with suction and injection. J. Phys. Soc. Japan 16, 794–797. 1961MathSciNetADSMATHCrossRefGoogle Scholar
  658. [11]
    Datta, S. K.: Laminar flow of non-Newtonian fluid in channels with porous walls. Bull. Calcutta Math. Soc. 53, 111–116. 1961MATHGoogle Scholar
  659. [12]
    England, A. H., and A. E. Green: Steady-state thermoelasticity for initially stressed bodies. Phil. Trans. Roy. Soc. Lond. A 253, 517–542. 1961MathSciNetADSCrossRefGoogle Scholar
  660. [13]
    Ericksen, J. L.: Poiseuille flow of certain anisotropic fluids. Arch. Rational. Mech. Anal. 8, 1–8. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1961Google Scholar
  661. [14]
    Ericksen, J. L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–24. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1961Google Scholar
  662. [15] Eringen, A. C.: On the foundations of electro-elastostatics. Contract Nonr. 1100 (02)
    Tech. Rep. No. 19, Purdue Univ., November. 65 pp. 1961Google Scholar
  663. [16]
    Flavin, J. N., and A. E. Green: Plane thermoelastic waves in an initially stressed medium. J. Mech. Phys. Solids 9, 179–190. 1961MathSciNetADSMATHCrossRefGoogle Scholar
  664. [17]
    Giesekus, H.: Der Spannungstensor des visko-elastischen Körpers. Rheol. Acta 1 (1958/61), 395–403. 1961MATHCrossRefGoogle Scholar
  665. [18]
    Giesekus, H.: Einige Bemerkungen zum Fließverhalten elasto-viskoser Flüssigkeiten in stationären Schichtströmungen. Rheol. Acta 1 (1958/61), 404–413. 1961MATHCrossRefGoogle Scholar
  666. [19]
    Graebel, W. P.: Stability of a Stokesian fluid in Couette flow. Phys. Fluids 4, 362–368. 1961MathSciNetADSMATHCrossRefGoogle Scholar
  667. [20]
    Green, A. E.: Torsional vibrations of an initially stressed circular cylinder. Problems of Contin. Mech. (Muskhelisvili Anniv. Vol.), pp. 148–154. Phila.: S.I.A.M. (Russian Ed., pp. 128–134.) 1961Google Scholar
  668. [21]
    Grioli, G.: Onde di discontinuità ed elasticità asimmetrica. Rend. Accad. Lincei (8) 29, (1960), 309–312. 1961MathSciNetMATHGoogle Scholar
  669. [22]
    Grossman, P. U. A.: Weissenberg’S rheological equation of state. Kolloid-Z. 174, 97–109. 1961CrossRefGoogle Scholar
  670. [23]
    Hand, G. C.: A theory of dilute suspensions. Arch. Rational Mech. Anal. 7, 81–86. 1961MathSciNetMATHGoogle Scholar
  671. [24]
    Hayes, M., and R. S. Rivlin: Propagation of a plane wave in an isotropic elastic material subject to pure homogeneous deformation. Arch. Rational Mech. Anal. 8, 15–22. 1961MathSciNetMATHGoogle Scholar
  672. [25]
    Hayes, M., and R. S. Rivlin: Surface waves in deformed elastic materials. Arch. Rational Mech. Anal. 8, 358–380. 1961MathSciNetMATHGoogle Scholar
  673. [26]
    Hill, R.: Uniqueness in general boundary-value problems for elastic or inelastic solids. J. Mech. Phys. Solids 9, 114–130. 1961MathSciNetADSMATHCrossRefGoogle Scholar
  674. [27]
    Hill, R.: Bifurcation and uniqueness in non-linear mechanics of continua. Problems Contin. Mech. (Muskhelisvili Anniv. Vol.), pp. 155–164. Phila.: S.I.A.M. 1961Google Scholar
  675. [28]
    Jain, M. K.: The flow of a non-Newtonian liquid near a rotating disk. Appl. Sci. Res. A 10, 410–418. 1961MATHCrossRefGoogle Scholar
  676. [29]
    Jain, M. K.: Flow of non-Newtonian liquid near a stagnation point with and without suction. J. Sci. Engr. Res. 5, 81–90. 1961Google Scholar
  677. [30]
    Jain, M. K., and M. Balram: Problems of cross-viscosity with large suction. J. Sci. Engr. Res. 5, 259–270. 1961Google Scholar
  678. [31]
    JoHNsoN, M. W., jr.: On variational principles for non-Newtonian fluids. Trans. Soc. Rheol. 5, 9–21. 1961MathSciNetCrossRefGoogle Scholar
  679. [32]
    Kapur, J. N., and S. Goel: Flow of visco-elastic liquids in tubes. Bull. Calcutta Math. Sci. 53, 1–6. 1961MATHGoogle Scholar
  680. [33]
    Krishnan, R. S., and E. S. Rajagopal: The atomistic and the continuum theories of crystal elasticity. Ann. Physik (7) 8, 121–136. 1961ADSCrossRefGoogle Scholar
  681. [34]
    KRÖNer, E.: Bemerkung zum geometrischen Grundgesetz der allgemeinen Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rational Mech. Anal. 7, 78–80. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1961Google Scholar
  682. [35]
    Leslie, F. M.: The slow flow of a viscoelastic liquid past a sphere, with an appendix by R. I. Tanner. Quart. J. Mech. Appl. Math. 14, 36–48. 1961MathSciNetMATHCrossRefGoogle Scholar
  683. [36]
    Lodge, A. S.: A new cone-and-plate and parallel plate apparatus for the deter¬mination of normal stress differences in steady shear flow. Rheol. Abstr. 4, No. 3, 29. 1961Google Scholar
  684. [37]
    Metzner, A. B., W. T. Houghton, R. A. Sailor, and J. L. White: A method for the measurement of normal stresses in simple shearing flow. Rheol. 5, 133–147. 1961ADSCrossRefGoogle Scholar
  685. [38]
    Mithal, K. G.: On the effects of uniform high suction on the steady flow of a non-Newtonian liquid due to a rotating disk. Quart. J. Mech. Appl. Math. 14, 403–410. 1961MathSciNetMATHCrossRefGoogle Scholar
  686. [39]
    Narasimhan, M. N. L.: Laminar non-Newtonian flow in an annulus with porous walls. Z. angew. Math. Mech. 41, 44–54. 1961MathSciNetMATHGoogle Scholar
  687. [40]
    Narasimhan, M. N. L.: Laminar non-Newtonian flow in a porous pipe. Appl. Sci. Res. A 10, 393–409. 1961MATHCrossRefGoogle Scholar
  688. [41]
    Nariboli, G. A.: A note on the.fracture of a hypo-elastic bar. Proc. Fifth Congr. Theor. Appl. Mech. (Roorkee, 1959), c. 55–60. 1961Google Scholar
  689. [42]
    Novozhilov, V. V.: Theory of Elasticity (Transi. from a Russian work pubi. in 1958 ). Jerusalem: Israel Progr. Sci., Transl. 1961Google Scholar
  690. [43]
    Oldroyd, J. G.: The hydrodynamics of materials whose rheological properties are complicated. Rheol. Acta 1 (1958/61), 337–344. 1961MATHCrossRefGoogle Scholar
  691. [44]
    Philippoff, W.: Elastic stresses and birefringence in flow. Trans. Soc. Rheol. 5, 163–191. 1961CrossRefGoogle Scholar
  692. [45]
    Pipkin, A. C., and R. S. Rivlin: Electrical conduction in a stretched and twisted tube. J. Math. and Phys. 2, 636–638. 1961MathSciNetADSMATHCrossRefGoogle Scholar
  693. [46]
    Pipkin, A. C., and R. S. Rivlin: Small deformations superposed on large de¬formations in materials with fading memory. Arch. Rational Mech. Anal. 8, 297–308. 1961MathSciNetMATHGoogle Scholar
  694. [47]
    Prager, W.: Introduction to Mechanics of Continua. Boston etc.: Ginn. German Transi. Einführung in die Kontinuumsmechanik. Basel: Birkhäuser. 1961Google Scholar
  695. [48]
    Rajeswari, G. K.: Flow of non-Newtonian fluid between torsionally oscillating disks Proc. Indian Acad. Sci. A 54, 188–204. 1961MathSciNetMATHGoogle Scholar
  696. [49]
    Rathna, S. L., and G. K. Rajeswari: Superposability in non-Newtonian fluids with variable viscosity and cross-viscosity coefficients. Proc. Nat. Acad. Sci. India 27. 1961Google Scholar
  697. [50]
    Reiner, M.: Research on cross stresses in the flow of rarefied air. Technical report. The Technion. 1 March. 1961Google Scholar
  698. [51]
    Rivlin, R. S.: Constitutive equations involving functional dependence of one vector on another. Z. angew. Math. Phys. 12, 447–452. 1961MathSciNetMATHGoogle Scholar
  699. [52]
    Rivlin, R. S.: Some reflections on non-linear visco-elastic fluids. Phénomènes de relaxation et du fluage en rhéologie non-linéaire, pp. 83–93. Paris: Ed. C.N.R.S. 1961Google Scholar
  700. [53]
    ScHwarzl, F.: Einige Betrachtungen zum gegenwärtigen Stand der makroskopischen Theorien des rheologischen Verhaltens. Rheol. Acta 1 (1958/61), 345–355. 1961CrossRefGoogle Scholar
  701. [54]
    Seeger, A.: Recent advances in the theory of defects in crystals. Physica Status Solidi 1, 669–698. 1961ADSCrossRefGoogle Scholar
  702. [55]
    Sinha, S. B.: Torsional vibrations of an hypo-elastic cylinder. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 9, 197–200. 1961MATHGoogle Scholar
  703. [56]
    Sinha, S. B.: Torsional vibrations of a hypo-elastic circular cylinder. Arch. Mech. Stosow. 13, 389–392. 1961MATHGoogle Scholar
  704. [57]
    Slattery, J.: Flow of a simple non-Newtonian fluid past a sphere. Appl. Sci. Res. A 10, 286–294. 1961MATHCrossRefGoogle Scholar
  705. [58]
    Slattery, J. C., and R. B. Bird: Non-Newtonian flow past a sphere. Chem. Engr. Sci. 16, 231–241. 1961CrossRefGoogle Scholar
  706. [59]
    Spencer, A. J. M.: The invariants of six symmetric 3 X 3 matrices. Arch. Rational Mech. Anal. 7, 64–77. 1961MATHGoogle Scholar
  707. [60]
    Srivastava, A. C.: Flow of non-Newtonian fluids at small Reynolds number be¬tween two infinite disks: one rotating and the other at rest. Quart. J. Mech. Appl. Math. 14, 353–358. 1961MathSciNetMATHCrossRefGoogle Scholar
  708. [61]
    Toupin, R. A.: Some relations between waves, stability, uniqueness criteria, and restrictions on the form of the energy function in elasticity theory. Lecture to the British Appl. Math. Coll. Newcastle-on-Tyne (widely circulated in manuscript but not published). 1961Google Scholar
  709. [62]
    Toupin, R. A., and B. Bernstein: Sound waves in deformed perfectly elastic materials. Acousto-elastic effect. J. Acoust. Soc. Amer. 33, 216–225. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965. 1961Google Scholar
  710. [63]
    Truesdell, C.: General and exact theory of waves in finite elastic strain. Arch. Rational Mech. Anal. 8, 263–296. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon & Breach 1965 and also in Wave Propagation in Dissipative Materials. Berlin-Heidelberg-New York: Springer 1965. 1961Google Scholar
  711. [64]
    Truesdell, C.: Una teoria meccanica della diffusione. Celebraz. Archimedee Sec. XX (1960), Iii Simposio di mecc. e mat. applic. 161–168. 1961Google Scholar
  712. [65]
    Urbanowski, W.: Deformed body structure. Arch. Mech. Stosow. 13, 277–294. 1961MATHGoogle Scholar
  713. [66]
    Verma, P. D. S.: Steady flow formation of linear fluent bodies with suction. J. Sci. Engr. Res. 5, 17–22. 1961Google Scholar
  714. [67]
    Verma, P. D. S.: Solid rotating shafts II. Bull. Inst. Poly. Jasi (2) 7, 41–44. 1961Google Scholar
  715. [68] Walters, K. : The motion of an elastico-viscous liquid contained between coaxial cylinders (Iii).
    Quart. J. Mech. Appl. Math. 14, 431–436. 1961Google Scholar
  716. [69]
    Ziegenhausen, A. J., R. B. Bird, and M. W. Johnson, jr.: Non-Newtonian flow around a sphere. Trans. Soc. Rheol. 5, 47–49. 1961Google Scholar
  717. [1]
    Adkins, J. E.: Syzygies relating the invariants for transversely isotropic materials. Arch. Rational Mech. Anal. 11, 357–367. 1962MathSciNetMATHGoogle Scholar
  718. [2] Amari, S.: A geometrical theory of moving dislocations and anelasticity. Res. Assn. Appl. Geom. (Tokyo)
    Res. Note (3), No. 52. 1962Google Scholar
  719. [3]
    Bernstein, B.: Conditions for second-order waves in hypo-elasticity. Trans. Soc. Rheol. 6, 263–273. 1962CrossRefGoogle Scholar
  720. [4]
    Bernstein, B., and R. A. Toupin: Some properties of the Hessian matrix of a strictly convex function. J. reine angew. Math. 210, 65–72. 1962MathSciNetMATHGoogle Scholar
  721. [5]
    Bhatnagar, P. L.: Non-Newtonian fluids. Proc. 49th Indian Sci. Congr. (Cuttack, 1961/62), pp. 1–30. 1962Google Scholar
  722. [6]
    Bhatnagar, P. L., and G. K. Rajeswari: The secondary flows induced in a non-Newtonian fluid between two parallel infinite oscillating plates. J. Indian Inst. Sci. 44, 219–238. 1962Google Scholar
  723. [7]
    Blatz, P. J., and W. L. Ko: Application of finite elasticity theory to deformation of rubbery materials. Trans. Soc. Rheol. 6, 223–251. 1962CrossRefGoogle Scholar
  724. [8]
    Chu, Boa-Teh: Stress waves in isotropic viscoelastic materials. I. Brown Univ. Div. Engr. Dept. Defense Arpa Report, March. 1962Google Scholar
  725. [9]
    Coleman, B. D.: Mechanical and thermodynamical admissibility of stress-strain functions. Arch. Rational Mech. Anal. 9, 172–186. 1962MATHGoogle Scholar
  726. [10]
    Coleman, B. D.: Kinematical concepts with applications in the mechanics and thermodynamics of incompressible viscoelastic fluids. Arch. Rational Mech. Anal. 9, 273–300. 1962MATHGoogle Scholar
  727. [11]
    Coleman, B. D.: Substantially stagnant motions. Trans. Soc. Rheol. 6, 293–300. 1962CrossRefGoogle Scholar
  728. [12]
    Coleman, B. D., and W. Noll: Steady extension of incompressible simple fluids. Phys. Fluids 5, 840–843. 1962MathSciNetADSMATHCrossRefGoogle Scholar
  729. [13]
    Datta, S. K.: Slow steady rotation of a sphere in a non-Newtonian inelastic viscous fluid. Appl. Sci. Res. A 11 (1962/63), 47–52. 1962MATHGoogle Scholar
  730. [14]
    Ericksen, J. L.: Kinematics of macromolecules. Arch. Rational Mech. Anal. 9, 1–8. 1962MathSciNetGoogle Scholar
  731. [15]
    Ericksen, J. L.: Hydrostatic theory of liquid crystals. Arch. Rational Mech. Anal. 9, 379–394. 1962Google Scholar
  732. [16]
    Ericksen, J. L.: Nilpotent energies in liquid crystal theory. Arch. Rational Mech. Anal. 10, 189–196. 1962MathSciNetMATHGoogle Scholar
  733. [17]
    Ericksen, J. L.: Orientation induced by flow. Trans. Soc. Rheol. 6, 275–291. 1962CrossRefGoogle Scholar
  734. [18]
    Eringen, A. C.: Non-linear Theory of Continuous Media. New York etc.: McGraw-Hill. xii 477 pp. 1962Google Scholar
  735. [19]
    Flavin, J. N.: Thermo-elastic Rayleigh waves in a prestressed medium. Proc. Cambridge Phil. Soc. 58, 532–538. 1962MathSciNetGoogle Scholar
  736. [20]
    Gtesfeus, H.: Elasto-viskose Flüssigkeiten, für die in stationären Schichtströmun¬gen sämtliche Normalspannungskomponente verschieden groß sind. Rheologica Acta 2, 50–62. 1962CrossRefGoogle Scholar
  737. [21]
    Giesekus, H.: Strömungen mit konstanten Geschwindigkeitsgradienten und die Bewegung von darin suspendierten Teilchen. I und II. Rheologica Acta 2, 101–122. 1962CrossRefGoogle Scholar
  738. [22]
    Giesekus, H.: Flüssigkeiten mit im Ruhestand singulärem Fließverhalten (quasi-plastische Flüssigkeiten). Rheologica Acta 2, 122–130. 1962CrossRefGoogle Scholar
  739. [23]
    Green, A. E.: Thermoelastic stress in initially stressed bodies. Proc. Roy. Soc. Lond. A 266, 1–19. 1962ADSMATHCrossRefGoogle Scholar
  740. [24]
    Grioli, S.: Mathematical Theory of Elastic Equilibrium (Recent Results). Ergeb. angew. Math. No. 7. Berlin-Göttingen-Heidelberg: Springer. 1962Google Scholar
  741. [25]
    Guo Zhong-Heng: The problem of stability and vibration of a circular plate subject to finite initial deformation. Arch. Mech. Stosow. 14, 239–252. 1962MATHGoogle Scholar
  742. [26]
    Guo Zhong-Heng: Certain problems of initially deformed plate. Arch. Mech. Stosow. 14, 779–788. 1962MATHGoogle Scholar
  743. [27]
    Guo Zhong-Heng: Vibration and stability of a cylinder subject to finite de¬formation. Arch. Mech. Stosow. 14, 757–768. 1962MATHGoogle Scholar
  744. [28]
    Guo Zhong-Heng: The equations of motion of a circular plate subject to initial strain. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 63–70. 1962Google Scholar
  745. [29]
    Guo Zhong-Heng: The equation of motion of a plate subject to initial homogeneous finite deformation. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, W7–113. 1962Google Scholar
  746. [30]
    Guo Zhong-Heng: A contribution to the theory of variated states of finite strain. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 129–133. 1962Google Scholar
  747. [31]
    Guo Zhong-Heng: Equations of small motion of a cylinder subject to a large deformation. Its natural vibration and stability. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 177–182. 1962Google Scholar
  748. [32]
    Guo Zhong-Heng: Variated states of membranes subject to finite deformation. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 307–312. 1962Google Scholar
  749. [33]
    Guo Zhong-Heng: Displacement equations of isentropic motion of a body subject to a finite isothermal initial strain. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 479–483. 1962Google Scholar
  750. [34]
    Hill, R.: Acceleration waves in solids. J. Mech. Phys. Solids 10, 1–16. 1962MathSciNetADSMATHCrossRefGoogle Scholar
  751. [35]
    Hill, R.: Uniqueness criteria and extremum principles in self-adjoint problems of continuum mechanics. J. Mech. Phys. Solids 10, 185–194. 1962MathSciNetADSMATHCrossRefGoogle Scholar
  752. [36]
    Jain, M. K.: Forced flow of a non-Newtonian liquid against a rotating disk. Bull. Inst. Polit. Iasi. (2) 8 (12), 83–92. 1962Google Scholar
  753. [37]
    Jain, M. K.: Heat transfer by laminar natural-convection flow of visco-elastic fluids between parallel walls. Arch. Mech. Stosow. 14, 747–756. 1962MATHGoogle Scholar
  754. [38]
    JoNEs, E. E., and J. E. Adkins: Perturbation problems in finite elasticity. Perturbation of constraint conditions. J. Math. Mech. 11, 341–370. 1962MathSciNetMATHGoogle Scholar
  755. [39]
    Kaliski, S., Z. Plochocki, and D. Rogula: The asymmetry of the stress tensor and the angular momentum conservation for a combined mechanical and electromagnetic field in a continuous medium. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 135–141. 1962Google Scholar
  756. [40]
    Kapur, J. N.: Some aspects of non-Newtonian flow. Math. Seminar 2 (1961), 181–204. 1962Google Scholar
  757. [41]
    Kapur, J. N., and S. Goel: A stability theorem for general non-Newtonian fluid. Appl. Sci. Res. A 11, 304–310. 1962Google Scholar
  758. [42]
    Knowles, J. A.: On a class of oscillations in the finite-deformation theory of elasticity. J. Appl. Mech. 29, 283–286. 1962MathSciNetADSMATHCrossRefGoogle Scholar
  759. [43]
    Kondo, K., and collaborators: Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by means of Geometry, Iii. Tokyo: Gakujutsu Bunken Fukyu-Kai. 1962Google Scholar
  760. [44]
    KRÖNer, E.: Dislocations and continuum mechanics. Appl. Mech. Rev. 15, 599–606. 1962Google Scholar
  761. [45]
    Leigh, D. C.: Non-Newtonian fluids and the second law of thermodynamics. Phys. Fluids 5, 501–502. 1962ADSMATHCrossRefGoogle Scholar
  762. [46]
    Mindlin, R. D., and H. F. Tiersten: Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415–448. 1962MathSciNetMATHGoogle Scholar
  763. [47]
    Mohan Rao, D. K.: Rectilinear motion of a Maxwell fluid. J. Indian. Inst. Sci. 45, 19–20. 1962MathSciNetGoogle Scholar
  764. [48]
    Mohan Rao, D. K.: Flow of a Maxwell liquid between two rotating coaxial cones having the same vertex. Proc. Indian Acad. Sci. 56, 198–205. 1962Google Scholar
  765. [49]
    Nanda, R. S.: On the three-dimensional flow of certain non-Newtonian fluids. Arch. Mech. Stosow. 14, 137–145. 1962MathSciNetMATHGoogle Scholar
  766. [50]
    Noll, W.: Motions with constant stretch history. Arch. Rational Mech. Anal. 11, 97–105. 1962MathSciNetMATHGoogle Scholar
  767. [51]
    Pao, Y.-H.: Theories for the flow of dilute solutions of polymers and of non-diluted liquid polymers. J. Polymer Sci. 61, 413–448. 1962ADSCrossRefGoogle Scholar
  768. [52]
    Rajeswari, G. K.: Laminar boundary layer on rotating sphere and spheroids in non-Newtonian fluids. Z. angew. Math. Phys. 13, 442–460. 1962MathSciNetMATHGoogle Scholar
  769. [53]
    Rajeswari, G. K., and S. L. Rathna: Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic fluids near a stagnation point. Z. angew. Math. Phys. 13, 43–57. 1962MathSciNetMATHGoogle Scholar
  770. [54]
    Rathna, S. L.: Slow motion of a non-Newtonian liquid past a sphere. Quart. J. Mech. Appl. Math. 15, 427–434. 1962MathSciNetMATHCrossRefGoogle Scholar
  771. [55]
    Rathna, S. L.: Flow of a particular class of non-Newtonian fluids near a rotating disk. Z. angew. Math. Mech. 42, 231–237. 1962MATHGoogle Scholar
  772. [56]
    Reiner, M.: Research on cross stresses in the flow of different gases. Technion Res. Devel. Found. Report, 1st April. 1962Google Scholar
  773. [57]
    Rivlin, R. S.: Constraints on flow invariants due to incompressibility. Z. angew. Math. Phys. 13, 589–591. 1962MATHGoogle Scholar
  774. [58]
    Schaefer, H.: Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. Misz. Angew. Math. Festschrift Tollmien. Berlin: Akademie-Verlag. 1962Google Scholar
  775. [59]
    Schlechter, R. S.: On a variational principle for the Reiner-Rivlin fluid. Chem. Engr. Sci. 17, 803–806. 1962CrossRefGoogle Scholar
  776. [60] Sedov, L. I.: Introduction to the Mechanics of Continuous Media [in Russian].
    Moscow. Gosud. Izdat. Fiz-Mat. Lit. 1962Google Scholar
  777. [61]
    Slattery, J. C.: Approximations to the drag force on a sphere maving slowly through either an Ostwald-DeWaele or a Sisko fluid. A.I.Ch. E. Jonral 8, 663–667. 1962Google Scholar
  778. [62]
    Smith, G. F.: Further results on the strain-energy function for anisotropic elastic materials. Arch. Rational Mech. Anal. 10, 108–118. 1962MATHGoogle Scholar
  779. [63]
    Spencer, A. J. M., and R. S. Rivlin: Isotropic integrity bases for vectors and second-order tensors. I. Arch. Rational. Mech. Anal. 9, 45–63. 1962MathSciNetADSMATHGoogle Scholar
  780. [64]
    Toupin, R. A.: Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11; 385–414. 1962MathSciNetMATHGoogle Scholar
  781. [65]
    Truesdell, C.: Solutio generalis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in deformationibus valde magnis. Arch. Rational Mech. Anal. 11, 106–113. Addendum 12, 427–428 (1963).MathSciNetCrossRefGoogle Scholar
  782. [66]
    Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344. 1962ADSCrossRefGoogle Scholar
  783. [67]
    Varley, E.: Flows of dilatant fluids. Quart. Appl. Math. 19 (1961/62), 331–347. 1962MathSciNetMATHGoogle Scholar
  784. [68]
    Verma, P. D. S.: Couette flow of certain anisotropic fluids. Arch. Rational Mech. Anal. 10, 101–107. 1962MATHGoogle Scholar
  785. [69]
    Verma, P. D. S., and S. B. Sinha: A note on the propagation of symmetrical disturbance from a transverse cylindrical hole in an infinite plate. Bull. Calcutta Math. Soc. 54, 75–78. 1962MATHGoogle Scholar
  786. [70]
    Walters, K.: A note on the rectilinear flow of elastico-viscous liquids through straight pipes of circular cross-section. Arch. Rational Mech. Anal. 9, 411–414. 1962MathSciNetMATHGoogle Scholar
  787. [71]
    Walters, K.: Non-Newtonian effects in some elastico-viscous liquids whose behavior at small rates of shear is characterized by a general linear equation of state. Quart. J. Mech. Appl. Math. 15, 63–76. 1962MathSciNetMATHCrossRefGoogle Scholar
  788. [72]
    Wehrli, C., and H. Ziegler: Einige mit dem Prinzip von der größten Dissipationsleistung verträgliche Stoffgleichungen. Z. angew. Math. Phys. 13, 372–393. 1962MathSciNetGoogle Scholar
  789. [73]
    Wesolowski, Z.: Stability in some cases of tension in the light of the theory of finite strain. Arch. Mech. Stosow. 14, 875–900. 1962MathSciNetMATHGoogle Scholar
  790. [74]
    WesolowaKI, Z.: Some stability problems of tension in the light of the theory of finite strains. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 123–128. 1962Google Scholar
  791. [75]
    Williams, M. C., and R. B. Bird: Three-constant Oldroyd model for viscoelastic fluids. Phys. Fluids 5, 1126–1128. 1962ADSCrossRefGoogle Scholar
  792. [76]
    Woo, T. C., and R. T. Shield: Fundamental solutions for small deformations superposed on finite biaxial extension of an elastic body. Arch. Rational. Mech. Anal. 9, 196–224. 1962MathSciNetADSMATHCrossRefGoogle Scholar
  793. [77]
    Zahorski, S. L.: Equations of the theory of large elastic deformations in terms of the geometry of the undeformed body. Arch. Mech. Stosow. 14, 941–956. 1962MathSciNetMATHGoogle Scholar
  794. [78]
    Zahorski, S.: On a certain form of the equations of the theory of finite elastic strain. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 415–420. 1962Google Scholar
  795. [79]
    Zahorski, S.: Experimental investigation of certain mechanical properties of rubber. Bull. Acad. Sci. Polon. Ser. Sci. Tech. 10, 421–427. 1962Google Scholar
  796. [1]
    Adkins, J. E.: Non-Linear diffusion. I. Diffusion and flow of mixtures of fluids. Phil. Trans. Roy. Soc. Lond. A 255, 607–633. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  797. [2]
    Adkins, J. E.: Non-linear diffusion, II. Constitutive equations for mixtures of isotropic fluids. Phil. Trans. Roy. Soc. Lond. A 255, 635–648. 1963ADSCrossRefGoogle Scholar
  798. [3]
    Adkins, J. E., and R. S. Rivlin: Propagation of electromagnetic waves in circular rods in torsion. Phil. Trans. Roy. Soc. Lond. A 255, 389–416. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  799. [4]
    Barenblatt, G. I., and G. G. Chernyi: On moment relations on surfaces of discontinuity in dissipative media. Pmm 27, 1205–1218 (transl of Priklad. Mat. Mekh. 27, 784–793). 1963Google Scholar
  800. [5]
    Bernstein, B., E. A. Kearsley, and L. J. Zapas: A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7, 391–410. 1963MATHCrossRefGoogle Scholar
  801. [6]
    Bhatnagar, P. L., and G. K. Rajeswari: Mouvement secondaire d’un fluide non newtonien compris entre deux sphères concentriques tournant autour d’un axe. C. R. Acad. Sci. Paris 256, 3823–3826. 1963MATHGoogle Scholar
  802. [7]
    Bhatnagar, P. L., and G. K. Rajeswari: Secondary flow of non-Newtonian fluids between two concentric spheres rotating about an axis. Indian J. Math. 5, 93–112. 1963MathSciNetMATHGoogle Scholar
  803. [8]
    Bhatnagar, P. L., and S. L. Rathna: Flow of a fluid between two rotating co¬axial cones having the same vertex. Quart. J. Mech. Appl. Math. 16, 329–346. 1963MathSciNetMATHCrossRefGoogle Scholar
  804. [9]
    Bondar, V. D.: On the possibility of considering the deformed and stressed states of a medium as the initial state. Pmm 27, 185–196 (transl. of Priklad. Mat. Mekh. 27, 135–141). 1963Google Scholar
  805. [10]
    Bragg, L. E., and B. D. Coleman: On strain energy functions for isotropic elastic materials. J. Math. and Phys. 4, 424–426. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  806. [11]
    Bragg, L. E., and B. D. Coleman: A thermodynamical limitation on compressibility. J. Math. and Phys. 4, 1074–1077. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  807. [12]
    Bressan, A.: Sulla propagazione delle onde ordinarie di discontinuità nei sistemi a trasformazioni reversibili. Rend. Sem. Mat. Padova 33, 99–139. 1963MathSciNetMATHGoogle Scholar
  808. [13]
    Bressan, A.: Termodinamica e magneto-viscoelasticità con deformazioni finite in relatività generale. Rend. Senn. Mat. Padova 34 (1964), 1–73.MathSciNetMATHGoogle Scholar
  809. [14]
    Bressan, A.: Una teoria di relatività generale includente, oltre all’ellettromagnetismo e alla termodinamica, le equazioni costitutive dei materiali ereditari. Sistemazione assiomatica. Rend. Sem. Mat. Padova 34 (1964), 74–109.MathSciNetMATHGoogle Scholar
  810. [15]
    Bressan, A.: Sui sistemi continui nel caso asimmetrico. Ann. di Mat. Pur. Appl. (4) 62, 169–222. 1963MathSciNetCrossRefGoogle Scholar
  811. [16]
    Bressan, A.: Onde ordinarie di discontinuità nei mezzi elastici con deformazioni finite in relatività generale. Riv. Mat. Univ. Parma (2) 4, 23–40. 1963MathSciNetMATHGoogle Scholar
  812. [17]
    Coleman, B. D., and V. Mizel: Thermodynamics and departures from Fourier’S law of heat conduction. Arch. Rational Mech. Anal. 13, 245–261. 1963MathSciNetMATHGoogle Scholar
  813. [18]
    Coleman, B. D., and W. Noll: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178. 1963MathSciNetMATHGoogle Scholar
  814. [19]
    Dahler, H. S., and L. E. Scriven: Theory of structured continua. I. General considerations of angular momentum and polarization. Proc. Roy Soc. Lond. A 275, 505–527. 1963Google Scholar
  815. [20]
    Ericesen, J. L.: Recoil of orientable fluids. Proc. 7th Congr. Theor. Appl. Mech. Bombay 1961, pp. 211–218. 1963Google Scholar
  816. [21]
    Ericksen, J. L.: Oriented solids. Proc. Sympos. Structural Dynamics. Tech. Doc. Rept. Asd-Tdr-63–140. Wright-Patterson ‘Air Force Base, Ohio. May. 1963Google Scholar
  817. [22]
    Eringen, A. C.: On the foundations of electro-elastostatics. Intl. J. Engr. Sci. 1, 127–153. 1963MathSciNetCrossRefGoogle Scholar
  818. [23]
    Flavin, J. N.: Surface waves in pre-stressed Mooney material. Quart. J. Mech. Appl. Math. 16, 441–449. 1963MathSciNetMATHCrossRefGoogle Scholar
  819. [24]
    Fosdick, R. L., and R. T. Shield: Small bending of a circular bar superposed on finite extension or compression. Arch. Rational Mech. Anal. 12, 223 — 248. 1963MathSciNetMATHGoogle Scholar
  820. [25]
    Giesekus, H.: Die simultane Translations-and Rotationsbewegung einer Kugel in einer elastoviskosen Flüssigkeit. Rheol. Acta 3, 59–71. 1963CrossRefGoogle Scholar
  821. [26]
    Green, A. E.: A note on wave propagation in initially deformed bodies. J. Mech. Phys. Solids 11, 119–126. 1963MathSciNetADSCrossRefGoogle Scholar
  822. [27]
    Greensmith, H. W.: Rupture of rubber, X. The change in stored energy on making a small cut in a test piece held in simple extension. J. Appl. Polymer Sci. 7, 993–1002. 1963Google Scholar
  823. [28]
    Greub, W.: Linear Algebra, 2nd Ed.. Berlin-Göttingen-Heidelberg: Springer. 1963MATHGoogle Scholar
  824. [29]
    Guo Zhong-Heng: Homographic representation of the theory of finite thermoelastic deformations. Arch. Mech. Stosow. 15, 475–505. 1963MATHGoogle Scholar
  825. [30]
    Guo Zhong-Heng: Some notes on hypoelasticity. Arch. Mech. Stosow. 15, 683–690. 1963MATHGoogle Scholar
  826. [31]
    Guo Zhong-Heng: Certain dynamical problems of an incompressible hypo-elastic sphere. Arch. Mech. Stosow. 15, 871–878. 1963Google Scholar
  827. [32]
    Guo Zhong-Heng: On the constitutive equation of hypoelasticity. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 301–304. 1963Google Scholar
  828. [33]
    Guo Zhong-Heng, and R. Solecki: Free and forced finite-amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material. Arch. Mech. Stosow. 15, 427–433. 1963MathSciNetMATHGoogle Scholar
  829. [34]
    Guo Zhong-Heng, and R. Solecki: Free and forced finite-amplitude oscillations of a thick-walled sphere of incompressible material. Bull Acad. Polon. Sci. Sér. Sci. Tech. 11, 47–52. 1963Google Scholar
  830. [35]
    Guo Zhong-Heng, and W. Urbanowski: Stability of non-conservative systems in the theory of elasticity of finite deformations. Arch. Mech. Stosow. 15, 309— 321. 1963Google Scholar
  831. [36]
    Guo Zhong-Heng, and W. Urbanowski: Certain stationary conditions in variated states of-finite strain. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 27–32. 1963MATHGoogle Scholar
  832. [37]
    Hayes, M.: Wave propagation and uniqueness in pre-stressed elastic solids. Proc. Roy. Soc. Lond. A 274, 500–506. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  833. [38]
    Herbert, D. M.: On the stability of viscoelastic liquids in heated plane Couette flow. J. Fluid Mech. 17, 353–359. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  834. [39]
    Kaliski, S.: On a model of the continuum with essentially non-symmetric tensor of mechanical stress. Arch. Mech. Stosow. 15, 33–45. 1963MathSciNetMATHGoogle Scholar
  835. [40]
    Kapur, J. N.: Flow of Reiner-Rivlin fluids in a magnetic field. Appl. Sci. Res. B 10, 183–194. 1963MATHCrossRefGoogle Scholar
  836. [41]
    Kapur, J. N., and R. C. Gupta: Two dimensional flow of visco-elastic fluid near a stagnation point with large suction. Arch. Mech. Stosow. 15, 711–717. 1963MathSciNetGoogle Scholar
  837. [42]
    Kou, S. L., and A. C. Eringen: On the foundations of non-linear thermo-visco¬elasticity. Int. J. Engr. Sci. 1, 199–229. 1963CrossRefGoogle Scholar
  838. [43]
    KRÖNer, E.: Zum statischen Grundgesetz der Versetzungstheorie. Ann. Physik (7) 11, 13–21 1963.MATHCrossRefGoogle Scholar
  839. [44]
    KRÖNer, E.: On the physical reality of torque stresses in continuum mechanics. Int. J. Engr. Sci. 1, 261–278. 1963CrossRefGoogle Scholar
  840. [45]
    Langlois, W. E.: Steady flow of a slightly visco-elastic fluid between rotating spheres. Quart. Appl. Math. 21, 61–71. 1963MathSciNetMATHGoogle Scholar
  841. [46]
    Langlois, W. E., and R. S. Rivltn: Slow steady-state flow of visco-elastic fluids through non-circular tubes. Rend. Mat. 22, 169–185. 1963MATHGoogle Scholar
  842. [47]
    Lianis, G.: Finite elastic analysis of an infinite plate with an elliptic hole in plane strain. Proc. 4th U.S. Nat. Congr. Appl. Mech. 1962, pp. 667–683. 1963Google Scholar
  843. [48]
    Lianis, G. Small deformations superposed on an initial large deformation in finite linear viscoelastic material. Univ. Washington Dept. Aero. Engr. Rep. 63–64, April. 1963Google Scholar
  844. [49]
    Lianis, G.: Equivalence of constitutive equations for non-linear materials with memory. Univ. Washington Dept. Aero. Engr. Rep. 63–5, April. 1963Google Scholar
  845. [50]
    Lianis, G.: Problems of small strains superposed on finite deformation in viscoelastic solids. Purdue Univ. Sch. Aero. Engr. Rep. 63–5, June. 1963Google Scholar
  846. [51]
    Lianis, G.: Constitutive equations of viscoelastic solids under finite deformation. Purdue Univ. Sch. Aero. Engr. Rep. 63–11, December. 1963Google Scholar
  847. [52]
    Lokhin, V. V.: A system of defining parameters characterizing the geometrical properties of an anisotropic medium [in Russian]. Dokl. Akad. Nauk Sssr 149, 295–297. English Transl., Soviet Physics Doklady 8, 260–261. 1963MathSciNetADSGoogle Scholar
  848. [53]
    Lokhin, V. V.: General forms of the relations between tensor fields in an anisotropic continuous medium, the properties of which are escribed by vectors, tensors of the second rank, and antisymmetric tensors of the third rank [in Russian]. Dokl. Akad. Nauk Sssr 149, 1282–1285. English. Transl., Soviet Physics Doklady 8, 345–348. 1963MathSciNetADSGoogle Scholar
  849. [54]
    Lokhin, V. V., and L. I. Sedov: Non-linear tensor functions of several tensor arguments Pmm 27, 597–629 (transi of Priklad. Mat. Mekh. 27, 393–417). 1963Google Scholar
  850. [55]
    Markovitz, H., and D. R. Brown: Parallel plate and cone-plate normal stress measurements on polyisobutylene-cetane solutions. Trans. Soc. Rheol. 7, 137–154. 1963CrossRefGoogle Scholar
  851. [56]
    Nanda, R. S.: On the three-dimensional flow of certain non-Newtonian liquids. Appl. Sci. Res. A 11 (1962/63) 376–386. 1963MATHGoogle Scholar
  852. [57]
    Nanda, R. S.: Visco-elastic flow due to a vibrating plane. Arch. Mech. Stosow. 15, 599–606. 1963MathSciNetGoogle Scholar
  853. [58]
    NoLL, W.: La mécanique classique, basée sur un axiome d’objectivité. La Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles. Colloque International, Paris (1959). Paris: Gauthier-Villars. pp. 47–56. 1963Google Scholar
  854. [59]
    NovozufLov, V. V.: On the forms of the stress-strain relation for initially iso¬tropic nonelastic bodies (geometric aspect of the question). Pmm 27, 1219–1243 (transi. of Priklad. Mat. Mekh. 27, 794–812). 1963Google Scholar
  855. [60]
    Pipkin, A. C., and R. S. Rivlin: Normal stresses in flow through tubes of non-circular cross-section. Z. angew. Math. Phys. 14, 738–742. 1963MathSciNetMATHGoogle Scholar
  856. [61]
    Pipkin, A. C., and A. S. Wineman: Material symmetry restrictions on non-polynomial constitutive equations. Arch. Rational Mech. Anal. 12, 420–426. 1963MathSciNetMATHGoogle Scholar
  857. [62] Sedov, L. I., and V. V. Lokhin : The specification of point symmetry groups by the use of tensors [in Russian].
    Dokl. Akad. Nauk Sssr 149, 796–797. 1963Google Scholar
  858. [63] Sensenig, C. B.: Instability of thick elastic solids. N.Y. Univ. Courant Inst. Math. Sci. Rep. 310, June. = (condensed)
    Comm. Pure Appl. Math. 17, 451–491 (1964). 1963Google Scholar
  859. [64]
    Shield, R. T., and R. L. Fosdick: Extremum principles in the theory of small elastic deformations superposed on large elastic deformations. Progress in Applied Mechanics (Prager Anniv. Vol.). New York: Macmillan, pp. 107–125. 1963Google Scholar
  860. [65]
    Shield, R. T., and A. E. Green: On certain methods in the stability theory of continuous systems. Arch. Rational Mech. Anal. 12, 354–460. 1963MathSciNetMATHGoogle Scholar
  861. [66]
    Smith, G. F., M. M. Smith, and R. S. Rivltn: Integrity bases for a symmetric tensor and a vector — The crystal classes. Arch. Rational Mech. Anal. 12, 93–133. 1963MATHGoogle Scholar
  862. [67]
    Srivastava, A. C.: Torsional oscillations of an infinite plate in second-order fluids. J. Fluid Mech. 17, 171–181. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  863. [68]
    Tanner, R. I.: Helical flow of elastico-viscous liquids. Part I, Theoretical. Rheol. Acta 3, 21–26. 1963CrossRefGoogle Scholar
  864. [69]
    Tanner, R. I.: Helical flow of elastico-viscous liquids. Part II, Experimental. Rheol. Acta 3, 26–34. (119)Google Scholar
  865. [70]
    Thomas, R. H., and K. Walters: On the flow of an elastico-viscous liquid in a curved pipe under a pressure gradient. J. Fluid Mech. 16, 228–242. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  866. [71]
    Ting, T. W.: Certain non-steady flows of second-order fluids. Arch. Rational Mech. Anal. 14, 1–26. 1963MathSciNetMATHGoogle Scholar
  867. [72]
    Toupin, R. A.: A dynamical theory of elastic dielectrics. J. Engr. Sci. 1, 101–126. 1963MathSciNetCrossRefGoogle Scholar
  868. [73]
    Truesdell, C.: Reactions of the history of mechanics upon modern research. Proc. 4th U.S. Nat. Congr. Appl. Mech. 1962, pp. 35–47. 1963Google Scholar
  869. [74]
    Truesdell, C.: The meaning of Betti’S reciprocal theorem. J. Res. Nat. Bur. Stand. B 67, 85–86. 1963MathSciNetMATHGoogle Scholar
  870. [75]
    Truesdell, C.: Remarks on hypo-elasticity. J. Res. Nat. Bur. Stand. B 67, 141–143. 1963MathSciNetMATHGoogle Scholar
  871. [76]
    Truesdell, C., and R. A. Toupin: Static grounds for inequalities in finite elastic strain. Arch. Rational. Mech. Anal. 12, 1–33. 1963MathSciNetADSMATHCrossRefGoogle Scholar
  872. [77]
    Verma, P. D. S.: Electrical conduction in finitely deformed isotropic materials. Arch. Mech. Stosow. 15, 3–6. 1963Google Scholar
  873. [78]
    Verma, P. D. S.: Flow of anisotropic fluids between rotating coaxial cones. Arch. Mech. Stosow. 15, 767–773. 1963MATHGoogle Scholar
  874. [79]
    Verma, P. D. S.: A few examples showing use of hypo-elasticity in plasticity. Proc. Nat. Acad. Sci. India 33, 101–106. 1963Google Scholar
  875. [80]
    Verma, P. D. S., and S. B. Sinha: Solutions in hypo-elasticity of grade one. J. Sci. Engr. Res. 7, 223–234. 1963Google Scholar
  876. [81]
    Walters, K., and N. D. Waters: A note on the formulation of simple equations of state for elastico-viscous liquids. Z. angew. Math. Phys. 14, 742–745. 1963MathSciNetGoogle Scholar
  877. [82]
    Wesolowski, Z.: The axially symmetric problem of stability loss of an elastic bar subject to tension. Arch. Mech. Stosow. 15, 383–395. 1963MathSciNetMATHGoogle Scholar
  878. [83]
    Wesolowski, Z.: An inverse method in stresses for solving problems of large elastic strain. Arch. Mech. Stosow. 15, 857–896. 1963MathSciNetMATHGoogle Scholar
  879. [84]
    WesolowsKI, Z.: The axial-symmetric problem of instability in the case of tension of the elastic rod. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 53–58. 1963Google Scholar
  880. [85]
    WesolowsKI, Z.: Duality of inverse methods in the theory of elasticity of finite deformations. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 305–309. 1963Google Scholar
  881. [86]
    Zahorski, S.: Some problems of motions and stability for hygrosteric materials. Arch. Mech. Stosow. 15, 915–940. 1963MathSciNetGoogle Scholar
  882. [87]
    Zahorski, S.: Small additional motion superposed on the fundamental motion of a hypoelastic medium. Bull. Acad. Polon. Sci. Sir. Sci. Tech. 11, 449–454. 1963Google Scholar
  883. [88]
    Zahorski, S.: Hypoelastic stability in the case of simple extension. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 455–461. 1963Google Scholar
  884. [89]
    Ziegler, H.: Some extremum principles in irreversible thermodynamics, with application to continuum mechanics. Progress in Solid. Mech. 4, 91–193. 1963Google Scholar
  885. [1]
    Adams, N., and A. S. Lodge: Rheological properties of concentrated polymer solutions. II. A cone-and-plate and parallel plate pressure distribution apparatus for determining normal stress differences in steady shear flow. Phil. Trans. Roy. Soc. Lond. A 256, 149–184. 1964ADSCrossRefGoogle Scholar
  886. [2]
    Adkins, J. E.: Non-linear diffusion through isotropic highly elastic solids. Phil. Trans. Roy. Soc. Lond. A 256, 301–316. 1964MathSciNetADSMATHCrossRefGoogle Scholar
  887. [3]
    Adkins, J. E. Diffusion of fluids through aeolotropic highly elastic solids. Arch. Rational Mech. Anal. 15, 222–234. 1964CrossRefGoogle Scholar
  888. [4]
    Beatty, M.: Some static and dynamic implications of the general theory of elastic stability. Thesis. Johns Hopkins Univ. (see also Beatty [1965, 1]). 1964Google Scholar
  889. [5]
    Bell, J. F.: Experiments on large amplitude waves in finite elastic strain. Proc. Intl. Sympos. Second-order Effects. Haifa 1962, pp. 173–186. 1964Google Scholar
  890. [6]
    Beaker, R.: Contrainte sur une paroi en contacte avec un fluide visqueux classique, un fluide de Stokes, un fluide de Coleman-Noll. C. R. Acad. Sci. Paris 258, 5144–5147. 1964MathSciNetGoogle Scholar
  891. [7]
    Bernstein, B., E. A. Kearsley, and L. Zapas: Thermodynamics of perfect elastic fluids. J. Res. Nat. Bur. Stand B 68, 103–113. 1964MathSciNetMATHGoogle Scholar
  892. [8]
    Bland, D. R.: On shock waves in hyperelastic media. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 93–108. 1964MathSciNetGoogle Scholar
  893. [9]
    Bland, D. R.: Dilatational waves and shocks in large displacement isentropic dynamic elasticity. J. Mech. Phys. Solids 12, 245–267. 1964MathSciNetADSCrossRefGoogle Scholar
  894. [10]
    Bousso, E.: Observations on the self-acting thrust airbearing effect. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 483–492. 1964Google Scholar
  895. [11]
    Bragg, L.: Monotonicity on curves in lieu of the C-N inequalities for finite elastic¬ity. Arch. Rational Mech. Anal. 17, 327–338. 1964MathSciNetMATHGoogle Scholar
  896. [12]
    Brugger, K.: Thermodynamic definition of higher order elastic coefficients. Phys. Rev. (2) 133, A 1611—A 1612. 1964Google Scholar
  897. [13]
    Chacon, R. V. S., and R. S. Rivlin: Representation theorems in the mechanics of materials with memory. Z. angew. Math. Phys. 15, 444–447. 1964MATHGoogle Scholar
  898. [14]
    Chu, Boa-Teh: Finite amplitude waves in incompressible perfectly elastic materials J. Mech. Phys. Solids 12, 45–57. 1964MathSciNetCrossRefGoogle Scholar
  899. [15]
    Coleman, B. D.: Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17, 1–46. 1964Google Scholar
  900. [16]
    Coleman, B. D.: On thermodynamics, strain impulses, and viscoelasticity. Arch. Rational Mech. Anal 17, 230–254. 1964MATHGoogle Scholar
  901. [17]
    Coleman, B. D., and H. Markovitz: Normal stress effects in second-order fluids. J. Appl. Phys. 35, 1–9. 1964MathSciNetADSMATHCrossRefGoogle Scholar
  902. [18]
    Coleman, B. D., and V. J. Mizel: Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40, 1116–1125. 1964MathSciNetADSCrossRefGoogle Scholar
  903. [19]
    Coleman, B. D., and W. Noll: Material symmetry and thermostatic inequalities in finite elastic deformations. Arch. Rational Mech. Anal. 15, 87–111. 1964MathSciNetMATHGoogle Scholar
  904. [20]
    Coleman, B. D., and W. Noll: Simple fluids with fading memory. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 530–552. 1964MathSciNetGoogle Scholar
  905. [21]
    Condiff, D. W., and J. S. Dahler: Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7, 842–854. 1964MathSciNetADSMATHCrossRefGoogle Scholar
  906. [22]
    Datta, S. K.: Note on the stability of an elastico-viscous liquid in Couette flow. Phys. Fluids 7, 1915–1919. 1964MathSciNetADSCrossRefGoogle Scholar
  907. [23]
    Drucker, D. C.: Survey on second-order plasticity. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 416–423. 1964MathSciNetGoogle Scholar
  908. [24]
    Duvaut, G.: Application du principe de l’indifférence matérielle à un milieu élastique matériellement polarisé. C. R. Acad. Sci. Paris 258, 3631–3634. 1964MathSciNetMATHGoogle Scholar
  909. [25]
    Eringen, A. C.: Simple microfluids. Intl. J. Engr. Sci. 2, 205–217. 1964MathSciNetMATHCrossRefGoogle Scholar
  910. [26]
    Eringen, A. C., and E. S. Suhubi: Non-linear theory of simple microelastic solids-I. Intl. J. Engr. Sci. 2, 189–204. 1964MathSciNetMATHCrossRefGoogle Scholar
  911. [27]
    Eringen, A. C., and E. S. Sum’s’: Non-linear theory of micro-elastic solids-II. Intl. J. Engr. Sci. 2, 389–404. 1964CrossRefGoogle Scholar
  912. [28] Fisher, G. M. C., and M. E. Gurtin : Wave propagation in the linear theory of viscoelasticity. Brown Univ. Div. Appl. Math. Contract Nonr. 562 (25)
    Tech. Rep., 28, August. 1964Google Scholar
  913. [29]
    Foux, A.: An experimental investigation of the Poynting effect. Proc. I