Cell populations

  • Wim J. Voorn
  • Arthur L. Koch
  • P. A. C. Raats
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 68)


In the case of cell poplulations we seldomly can do any direct measurements on the level of the individuals. So in cell biology the inverse problem is paramount: we have to infer the dynamical properties of the individuals from population observations. The paper by Voorn & Koch exemplifies this (also compare part A section 1.4.4). In it a very general procedure is described for connecting various size related statistics on the p- and --levels.


Reference Configuration Equal Division Deformation Gradient Tensor Cell Size Distribution Fission Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burdett, I.D.J., and T.B.L. Kirkwood. 1983. How does a bacterium grow during its cyc le? J . Theo r . Bio l. 103: 11–20.CrossRefGoogle Scholar
  2. Collins, J.F., and M.H. Richmond. 1962. Rate of growt h of Bacil lus cereus be twee n di visions . J . Gen . Microbiol. 28 : 15–88.CrossRefGoogle Scholar
  3. Donachie, W. D. 1968 . Relat ionsh ip betwe en ce l l s ize and t ime of initiation of DNA replication . Nature (London) 219: 1077–1079 .CrossRefGoogle Scholar
  4. Errington, F.P., E.O. Powell, and N. Thompson. 1965. Growth characteristics of so me Gram-negative bacteria . J. Gen. Mic ro biol . 39 : 109–123.CrossRefGoogle Scholar
  5. Harvey, R.J., A.G. Marr, and P.R. Painter. 1967. Kinetics of growth of individual ce l ls of Esche richia co l i and Azoto bac ter agi lis . J. Bacteriol . 93: 605–617.Google Scholar
  6. Koch, A.L. and M. Schaechter. 1962. Amodel f or t he statistics of the cell division process . J. Gen. Microbiol . 29: 435–454.CrossRefGoogle Scholar
  7. Koch, A.L. 1966. Distribution of cell size in growi ng c ul t ures of bacteria and the applicability of the Collins-Richmond princi ple . J. Gen . Microbiol. 45 : 409–417. CrossRefGoogle Scholar
  8. Koch, A.L. and M.L. Higgins . 1982. Cell cycle dynamics inferred from the static properties of cells in balanced growth. J . Gen . Microbiol . 128: 2877–2892 .Google Scholar
  9. Koppes, L.J.H., C.L. Woldringhand, N. Nanninga . 1978 . Size var iations and co rrelation of different cell cycle events in slow-growing Escherichia col i . J. Bacteriol . 134 :423–433 .Google Scholar
  10. Koppes, L.J.H. and N. Nanninga. 1980. positive correlation between size at initiation of chromosome replication in Escherichia coli and size at initiat ion of cell constriction. J. Bacteriol . 143: 89–99 .Google Scholar
  11. Kubitschek, H.E. and C.L. Woldringh. 1983 . Cell elongation and division probabi lity during the Escherichia coli growth cycle. J . Bacteriol . 153: 1379–1387.Google Scholar
  12. Marr, A.G., R.J. Harvey and W.C. Trentini. 1966. Growth and divis ion of Escherichia coli. J. Bacteriol. 91 : 2388–2389.Google Scholar
  13. Marr, A.G., P.R. Painter and E.H. Nilson. 1969. Growth and divis ion of individual bacteria. Symp. Soc. Gen. Microbiol. 19 : 237–259.Google Scholar
  14. Painter, P.R. , and A.G. Marr. 1968. Mathematics cf microbial populations. Annu. Rev. Microbiol. 22 : 519–548.CrossRefGoogle Scholar
  15. Powell, E.O. 1964. A note on Koch and Schaechter ’s hypothesis about growth and fission of bacteria. J. Gen. Microbiol. 37: 231–249.CrossRefGoogle Scholar
  16. Pritchard, R.H., P.T. Barth and J. Collins. 1969. Microbial growth. Symp.Soc. Gen. Microbiol. 19: 263–297.Google Scholar
  17. Trueba, F.J. 1981. A morphometric analysis of Esch erichia co l i and other rod-shaped bacteria. Thesis. Univers ity of Amsterdam , Amsterdam.Google Scholar
  18. Trueba, F.J. 1982. On t he prec ision and accuracy achieved by Escherichia coli cells at fission abou t their middle. Arch. Mic r ob i ol. 131 : 55- 59 .Google Scholar
  19. Voorn, W. J. 1983. Statistics of cell-size in the steady-state with applications to Escherichia co l i. The s i s , Univers i ty of Ams terdam, Amsterdam .Google Scholar
  20. Bell, G.I., and E.C. Anderson, 1967. Cel1 growth and division . I. A mathematical model wi th appl i c a t i ons to cell volume distributions in mammalian suspension cultures. Bi op hys . J. 7: 329–351 .Google Scholar
  21. Diekmann, O. 1983. The dynamics of structured populations: sorne examples . Preprint TW 241/83 , Ma t hema tical Centre, Amsterdam, 12 pp .Google Scholar
  22. Diekmann, O., H.J.A.M. Heymans and H.R . Thieme, 1983. On the stability of the cell size distr i buti on . Preprint TW 242/ 83, Ma thematical Centre, Amsterdam,32 pp.Google Scholar
  23. Erickson, R.O., 1976. Modeling of plan t growth . Annu. Rev. Plant Physiol. 27:207 -234CrossRefGoogle Scholar
  24. Gurtin, M.E., 1981. An i ntroduction t o cont inuum mechanics . Academic Press, New York , 265 pp.Google Scholar
  25. Haies, S., 1727 . Vegeta bl e Sta t i cks. Repub l ished in History of Science Library : Primary Source s . MacDonald , Landon, 216 pp.Google Scholar
  26. Lin, C. C. and L.A. Segel. 1974. Mathematics a pplied t o deterministic problems in the natural scienc e s. Macmil lan , New York, 6 04 pp.Google Scholar
  27. Segel, L.A., 1977 . MathematicB applied t o continuum mechanics . Macmillan , New Yor k , 590 pp .Google Scholar
  28. Truesdell, C. and R.A. Tonpin, 1960. The classical field theories . Handbuch der Phys ik 111/1 : 226–793 . Springer Verlag, Berlin.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Wim J. Voorn
    • 1
  • Arthur L. Koch
    • 2
  • P. A. C. Raats
    • 3
  1. 1.Department of Electron Microscopy and Molecular CytologyUniversity of AmsterdamThe Netherlands
  2. 2.Department of BiologyIndiana UniversityBloomington, IndianaUSA
  3. 3.Institute for Soil FertilityHaren (Gr.)The Netherlands

Personalised recommendations