Advertisement

Strong homology on CH(pro-Top)

  • Sibe Mardešić
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

In 17 we have defined strong homology groups \({\bar H_m}\left( {X;G} \right)\) of an inverse system of spaces. In this section, with every coherent mapping f: XY, we associate homomorphisms \({f_*}:{\bar H_m}\left( {X;G} \right) \to {\bar H_m}\left( {Y;G} \right),\) which depend only on the homotopy class [f]. In this way \({\bar H_m}\left( {.;G} \right),m \in {\Bbb Z},\) become functors from the coherent homotopy category CH(Top) to the category Ab of abelian groups.

Keywords

Homotopy Class Congruence Class Inverse System Strong Homology Summation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographic notes

  1. Mitchell, B. (1973): The cohomological dimension of a directed set. Canad. J. Math. 27, 233–238CrossRefGoogle Scholar
  2. Cartan, H., Eilenberg, S. (1956): Homological algebra. Princeton University Press, Princeton, N.J.Google Scholar
  3. Mitchell, B. (1972): Rings with several objects. Advances in Math. 8, 1–161MathSciNetMATHCrossRefGoogle Scholar
  4. Govorov, V.E. (1965): On flat modules. Sibirski Mat. Z. 6, No. 2, 300–304MathSciNetMATHGoogle Scholar
  5. Lazard, D. (1969): Autour de la platitude. Bull. Soc. Math. France 97, 81–128MathSciNetMATHGoogle Scholar
  6. Roos, J.- E. (1961): Sur les foncteurs dérivés de lim. Applications. C. R. Acad. Sci. Paris 252, 3702–3704MathSciNetMATHGoogle Scholar
  7. Nöbeling, G. (1961): Uber die derivierten des inversen and des direkten Limes einer Modul-Familie. Topology 1, 47–61CrossRefGoogle Scholar
  8. Jensen, C.U. (1972): Les foncteurs dérivés de lim et leurs applications enthéorie des modules. Lecture Notes in Math. 254, Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Mitchell, B. (1973): The cohomological dimension of a directed set. Canad. J. Math. 27, 233–238CrossRefGoogle Scholar
  10. Mardesié, S. (1996a): Nonvanishing derived limits in shape theory. Topology 35, 521–532MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sibe Mardešić
    • 1
  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations