The vanishing theorems

  • Sibe Mardešić
Part of the Springer Monographs in Mathematics book series (SMM)


In general, the computation of higher derived limits lim n X of an inverse system of modules is very difficult. Therefore, most applications of these functors depend on the information whether lim n X vanishes or not. Consequently, it is very important to have conditions, which imply lim n X = 0, as well as conditions, which imply lim n X ≠ O. This section is devoted to both cases.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bucur, I., Deleanu, A. (1968): Introduction to the theory of categories. WileyInterscience Publ., LondonMATHGoogle Scholar
  2. Goblot, R. (1970): Sur les dérivés de certaines limites projectives. Applications aux modules. Bull. Sc. Math. 2. Sér. 94, 251–255MathSciNetMATHGoogle Scholar
  3. Mitchell, B. (1972): Rings with several objects. Advances in Math. 8, 1–161MathSciNetMATHCrossRefGoogle Scholar
  4. Osofsky, B.L. (1968a): Homological dimension and the continuum hypopthesis. Trans. Amer. Math. Soc. 132, 217–230MathSciNetMATHCrossRefGoogle Scholar
  5. Osofsky, B.L. (1968b): Upper bounds on homological dimensions. Nagoya Math. J. 32, 315–322MathSciNetMATHGoogle Scholar
  6. Mitchell, B. (1972): Rings with several objects. Advances in Math. 8, 1–161MathSciNetMATHCrossRefGoogle Scholar
  7. Roos, J.- E. (1961): Sur les foncteurs dérivés de lim. Applications. C. R. Acad. Sci. Paris 252, 3702–3704MathSciNetMATHGoogle Scholar
  8. Jensen, C.U. (1972): Les foncteurs dérivés de lim et leurs applications enthéorie des modules. Lecture Notes in Math. 254, Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Jensen, C.U. (1977): On the global dimension for the functor category (mod R, Ab). J. Pure Appl. Algebra 11, 45–51MathSciNetCrossRefGoogle Scholar
  10. Osofsky, B.L. (1971): Homological dimensions of modules. American Math. Soc., CBMS 12, Ann ArborGoogle Scholar
  11. Osofsky, B.L. (1974): The subscript of“, projective dimension, and the vanishing of lim(n). Bull. Amer. Math. Soc. 80, 8–26MathSciNetMATHCrossRefGoogle Scholar
  12. Gruson, L; Jensen, CU. (1981) Dimension cohomologiques reliées aux fonc- teurs lim, in Séminaire dalgèbre Paul Dubreil et Marie-Paule Malliavin. Proc. Paris 1980, Lecture Notes in Math, Springer, Berlin Heidelberg New York, 867, 234 – 294Google Scholar
  13. Kuz’minov, V. (1967): On derived functors of the projective limit functor. Sibirski Mat. Z. 8, No. 2, 333–345MathSciNetMATHGoogle Scholar
  14. Mardesié, S. (1996a): Nonvanishing derived limits in shape theory. Topology 35, 521–532MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sibe Mardešić
    • 1
  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations