Advertisement

Haupttafeln zur Prüfung von multivariaten statistischen Hypothesen

  • Heinz Kres

Zusammenfassung

Die in diesem Teil der Sammlung angeführten Tafeln bilden den Hauptinhalt des Bandes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellennachweis

  1. ANDERSON, T. W.: An introduction to multivariate statistical analysis. New York: Wiley, 1958.MATHGoogle Scholar
  2. BARTLETT, M. S.: A note on tests of significance in multivariate analysis. Proceedings of the Cambridge Philosophical Society 35, 180–185 (1939).CrossRefGoogle Scholar
  3. BOCK, R. D.: Multivariate statistical methods in behavioral research. New York: McGraw-Hill, 1975. (+ Preprints 1969/1971).Google Scholar
  4. DAS GUPTA, S. PERLMAN, M. D.: On the power of WILKS’ U-test for MANOVA. Journal of Multivariate Analysis 3, 220–225 (1973).MathSciNetMATHCrossRefGoogle Scholar
  5. FOSTER, F. G.: Upper percentage points of the generalized beta distribution II. Biometrika 44, 441–453 (1957).MathSciNetGoogle Scholar
  6. FOSTER, F. G.: Upper percentage points of the generalized beta distribution III. Biometrika 45, 492–503 (1958)MathSciNetGoogle Scholar
  7. FOSTER, F. G., REES, D. H.: Upper percentage points of the generalized beta distribution I. Biometrika 44, 237–247 (1957).MathSciNetGoogle Scholar
  8. GABRIEL, K. R.: A comparison of some methods of simultaneous inference in MANOVA. pp. 67–86 in: KRISHNAIAH, P. R. (ed.): Multivariate Analysis II. New York & London: Academic Press, 1969.Google Scholar
  9. GNANADESIKAN, R., LAUH, E., SNYDER, M., YAO, Y: Efficiency comparisons of certain multivariate analysis of variance test procedures. Paper presented at the Central Regional Meeting of the Institute of Mathematical Statistics, Chicago, December 1964. Abstract in: The Annals of Mathematical Statistics 36, 356–357 (February 1965).Google Scholar
  10. HECK, D. L.: Charts of some upper percentage points of the largest characteristic root. Ann. Math. Statist. 31, 625–642 (1960).MathSciNetMATHCrossRefGoogle Scholar
  11. HOTELLING, H.: The generalization of Student’s ratio. The Annals of Mathematical Statistics 2, 360–378 (1931).CrossRefGoogle Scholar
  12. HOTELLING, H.: A generalized T test and measure of multivariate dispersion. Proc. Second Berk. Symp. on Math. Stat. and Probability 1, 23–41 (1951).MathSciNetGoogle Scholar
  13. HSU, P. L.: On generalized analysis of variance. Biometrika 31, 221–237 (1940).MathSciNetMATHGoogle Scholar
  14. ITO, K.: On multivariate analysis of variance tests. Bulletin de l’Institut International de Statistique 38, 87–98 (1961).MATHGoogle Scholar
  15. ITO, K.: A comparison of powers of two multivariate analysis of variance tests. Biometrika 49, 445–462 (1962).Google Scholar
  16. ITO, K.: On the effect of heteroscedasticity and non-normality upon some multivariate test procedures. pp. 87–120 in: KRISHNAIAH, P. R. (ed.): Multivariate Analysis II. New York & London: Academic Press, 1969.Google Scholar
  17. KRES, H.: Multivariate Statistische Methoden. I + II. Berlin/Heidelberg/New York: Springer - Verlag, (In Vorbereitung, 1976).Google Scholar
  18. KRISHNAIAH, P. R. (ed.): Multivariate Analysis. (Proceedings of an International Symposium held in Dayton, Ohio, June 14–19, 1965 ). New York + London: Academic Press, 1966.Google Scholar
  19. KRISHNAIAH, P. R.:Simultaneous test procedures under general MANOVA models. pp. 121–143 in: KRISHNAIAH, P. R. (ed.): Multivariate Analysis II. New York + London: Academic Press, 1969.Google Scholar
  20. KRISHNAIAH, P. R. (ed.): Multivariate Analysis II. (Proceedings of the Second International Symposium on Multivariate Analysis held at Wright State University, Dayton, Ohio, June 17–22, 1968 ). New York + London: Academic Press, 1969.Google Scholar
  21. KRISHNAIAH, P. R. (ed.): Multivariate Analysis III. (Proceedings of the Third International Symposium on Multivariate Analysis Held at Wright State University, Dayton, Ohio, June 19–24, 1972 ). New York + London: Academic Press, 1973.Google Scholar
  22. LAWLEY, D. N.: A generalization of Fisher’s Z test. Biometrika 30, 180–187 (1938).MATHGoogle Scholar
  23. MARDIA, K. V.: Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhya, Series B, Vol. 36, 115–128 (1974).MathSciNetMATHGoogle Scholar
  24. MARDIA, K. V.: Assessment of multinormality and the robustness of HOTELLING’s T2 test. Applied Statistics 24, 163–171 (1975).MathSciNetCrossRefGoogle Scholar
  25. OLSON, CH. L.: Comparative robustness of six tests in multivariate analysis of variance. Journal of the American Statistical Association 69, 894–908 (1974).MATHCrossRefGoogle Scholar
  26. PILLAI, K. C. S.: Some new test criteria in multivariate analysis. The Annals of Mathematical Statistics 26, 117–121 (1955).MathSciNetMATHCrossRefGoogle Scholar
  27. PILLAI, K. C. S.: Statistical tables for tests of multivariate Hypotheses. Manila/Philippines: The Statistical Center, the University of the Philippines, 1960.Google Scholar
  28. PILLAI, K. C. S., JAYACHANDRA, K.: Power comparisons of tests of two multivariate hypotheses based on four criteria. Biometrika 54, 195–210 (1967).MathSciNetGoogle Scholar
  29. POSTEN, H. O., SARGMANN, R. E.: Power of the likelihoodratio test of the general linear hypothesis in multivariate analysis. Biometrika 51, 467–480 (1964).MathSciNetMATHGoogle Scholar
  30. ROY, J.: Step-down procedure in multivariate analysis. The Annals of Mathematical Statistics 29, 1177–1187 (1958).MATHCrossRefGoogle Scholar
  31. ROY, J.: Some aspects of multivariate analysis. New York: Wiley, 1957., Calcutta: Indian Statistical Institute, 1957.Google Scholar
  32. ROY, S. N., BARGMANN, R. E.: Tests of multiple independence and the associated confidence bounds. The Annals of Mathematical Statistics 29, 491–503 (1958).MathSciNetMATHCrossRefGoogle Scholar
  33. ROY, S. N., GNANADESIKAN, R., SRIVASTAVA, J. N.: Analysis and design of certain quantitative multiresponse experiments. Oxford: Pergamon Press, 1971.MATHGoogle Scholar
  34. SEBER, G. A. F.: The Linear Hypothesis: A general theory. ( No. 19 of Criffin’s Statistical Monographs & Courses). London: Griffin, 1966.Google Scholar
  35. WILKS, S. S.: Certain generalizations in the analysis of variance. Biometrika 24, 471–494 (1932).Google Scholar
  36. WILKS, S. S.: Certain generalizations in the analysis of variance. Biometrika 24, 471–494 (1932).Google Scholar
  37. WALL, F. J.: The generalized variance ratio or U-statistic. Albuquerque/New Mexico: The Dikewood Corporation, 1967.Google Scholar
  38. BARTLETT, M. S.: Multivariate Analysis. J. Roy. Statist. Soc., Series B, Vol. 9, 176–197 (1947).MathSciNetMATHGoogle Scholar
  39. RAO, C. R.: Advanced Statistical Methods in Biometric Research. New York Wiley, 1952.MATHGoogle Scholar
  40. PILLAI, K. C. S.: Statistical Tables for Tests of Multivariate Hypotheses. (Table 1 ). Manila, Philippines: The Statistical Center, the University of the Philippines, 1960.Google Scholar
  41. PEARSON, E. S., HARTLEY, H. O. (eds.): Biometrika Tables for Statisticians. Vol. II. (Table 48). Cambridge: Cambridge University Press, 1972. ( Published for the Biometrika Trustees ).Google Scholar
  42. ROY, S. N.: Some Aspects of Multivariate Analysis. New York: WILEY, 1957 and Calcutta: Indian Statistical Institute, 1957.Google Scholar
  43. BOCK, R. D.: Multivariate Statistical Methods in Behavioral Research. New York: McGraw-Hill, 1975 (+ Preprints 1969/1971).Google Scholar
  44. ROY, S. N.: Some Aspects of Multivariate Analysis. New York: Wiley, 1957 + Calcutta: Indian Statistical Institute, 1957.Google Scholar
  45. ROY, S. N.: Some Aspects of Multivariate Analysis. New York: Wiley, 1957 + Calcutta: Indian Statistical Institute, 1957.Google Scholar
  46. HECK, D. L.: Charts of some upper percentage points of the distribution of the largest characteristic root. The Annals of Mathematical Statistics 31, 625–642 (1960).MathSciNetMATHCrossRefGoogle Scholar
  47. FOSTER, F. G., REES, D. H.: Upper percentage points of the generalized beta distribution. I. Biometrika 44, 237–247 (1957).MathSciNetGoogle Scholar
  48. FOSTER, F. G.: Upper percentage points of the generalized beta distribution. II. Biometrika 44, 441–453 (1957).MathSciNetGoogle Scholar
  49. FOSTER, F. G.: Upper percentage points of the generalized beta distribution. III. Biometrika 45, 492–503 (1958).MathSciNetGoogle Scholar
  50. PEARSON, E. S., HARTLEY, H. O. (eds.): Biometrika Tables for Statisticians. Vol. II (Table 49). Cambridge: Cambridge University Press, 1972. ( Published for the Biometrika Trustees ).Google Scholar
  51. ROY, S. N.: Some Aspects of Multivariate Analysis. New York: Wiley, 1957 + Calcutta: Indian Statistical Institute 1957.Google Scholar
  52. HOTELLING, H.: A generalized T-test and measure of multivariate dispersion. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability Vol. 2 23–41 (1951)MathSciNetGoogle Scholar
  53. PILLAI, K. C. S.: Statistical Tables for Tests of Multivariate Hypotheses. (Table 3 ). Manila, Philippines: The Statistical Center, The University of the Philippines, 1960.Google Scholar
  54. HOTELLING, H.: A generalized T-test and measure of multivariate dispersion. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability Vol. 2 23–41 (1951).MathSciNetGoogle Scholar
  55. PILLAI, K. C. S.: Statistical Tables for Tests of Multivariate Hypotheses. (Table 2 ). Manila, Philippines: The Statistical Center, The University of the Philippines, 1960.Google Scholar
  56. HOTELLING, H.: The generalized of Student’s ratio. The Annals of Mathematical Statistics 2, 360–378 (1931).CrossRefGoogle Scholar
  57. JENSEN, D. R., HOWE, R. B.: Tables of HOTELLING’s T2-Distribution. Blacksburg/Virginia:Polytechnic Institute (Technical Report No. 9), March 1968. Revised Edition: August 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Heinz Kres
    • 1
  1. 1.F. Hoffman — La Roche & Co. A. G.BaselSchweiz

Personalised recommendations