Absolute Continuity of Measures corresponding to the Itô Processes and Processes of the Diffusion Type

  • Robert S. Liptser
  • Albert N. Shiryaev
Chapter
Part of the Applications of Mathematics book series (SMAP, volume 5)

Abstract

Let (Ω,F, P) be a complete probability space, let F = (F t ),t ≥ 0, be a nondecreasing family of sub-σ-algebras, and let W = (W t , F t ), t ≥ 0, be a Wiener process.

Keywords

Dition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Notes and References. 1

  1. 34.
    Cameron, R.H. and Martin, W.T. (1945): Transformation of Wiener integrals under a general class of linear transformations. Trans. Am. Math. Soc., 58, 184 - 219MathSciNetMATHGoogle Scholar
  2. 35.
    Cameron, R.H. and Martin, W.T. (1949): Transformation of Wiener integrals by nonlinear transformation. Trans. Am. Math. Soc., 66, 253 - 83MathSciNetMATHCrossRefGoogle Scholar
  3. 43.
    Cramer, H. (1940): On the theory of stationary random process. Ann. Math., 41, 2, 215 - 30.MathSciNetCrossRefGoogle Scholar
  4. 57.
    Doob, J.L. (1954): Stochastic Processes. Wiley, New YorkMATHGoogle Scholar
  5. 66.
    Fujisaki, M., Kallianpur, G. and Kunita, H. (1972): Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math., 9, 1, 19 - 40MathSciNetMATHGoogle Scholar
  6. 72.
    Gikhman, I.I. and Skorokhod, A.V. (1966): On densities of probability measures on function spaces. Usp. Mat. Nauk, 21, 83 - 152.MATHGoogle Scholar
  7. 91.
    Hitsuda, M. (1968): Representation of Gaussian processes equivalent to Wiener processes. Osaka J. Math., 5, 299-312Google Scholar

Notes and References.2

  1. 106.
    Jacod, J. and Shiryaev, A.N. (1987): Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin Heidelberg New YorkMATHCrossRefGoogle Scholar
  2. 124.
    Kadota, T.T. (1970): Nonsingular detection and likelihood ratio for random signals in white Gaussian noise. IEEE Trans. Inf. Theory, IT-16, 291 - 8Google Scholar
  3. 125.
    Kadota, T.T. and Shepp L.A. (1970): Conditions for the absolute continuity between a certain pair of probability measures. Z. Wahrsch. Verw. Gebiete, 16, 3, 250 - 60MathSciNetMATHCrossRefGoogle Scholar
  4. 128.
    Kailath, T. (1968): An innovation approach to least-squares estimation, Parts I, II. IEEE Trans. Autom. Control, AC-13, 646 - 60.Google Scholar
  5. 130.
    Kailath, T. (1971): The structure of Radon-Nikodym derivatives with respect to Wiener and related measures. Ann. Math. Stat., 42, 1054 - 67MathSciNetMATHCrossRefGoogle Scholar
  6. 136.
    Kallianpur, G. and Striebel, C. (1968): Estimation of stochastic systems: arbitrary system process with additive noise observation errors. Ann. Math. Stat., 39, 785 - 801MathSciNetMATHCrossRefGoogle Scholar
  7. 114.
    Kabanov, Yu.M., Liptser, R.S. and Shiryaev, A.N. (1977): `Predictable criteria for absolute continuity and singularity of probability measures (the continuous time case). Soy. Math., Dokl., 18, 6, 1515-8Google Scholar
  8. 115.
    Kabanov, Yu.M., Liptser R.S. and Shiryaev, A.N. (1977): On the question of absolute continuity and singularity of probability measures. Math. USSR Sb., 33, 2, 203 - 21MATHCrossRefGoogle Scholar
  9. 116.
    Kabanov, Yu.M., Liptser, R.S. and Shiryaev, A.N. (1979): Absolute continuity and singularity of locally absolutely continuous probability distributions, I. Math. USSR Sb., 35, 5, 631 - 80MATHCrossRefGoogle Scholar
  10. 117.
    Kabanov, Yu.M., Liptser, R.S. and Shiryaev, A.N. (1980): Absolute continuity and singularity of locally absolutely continuous probability distributions, II. Math. USSR Sb., 36, 1, 31 - 58MATHCrossRefGoogle Scholar
  11. 187.
    Leonov, V.P. and Shiryaev, A.N. (1959): Methods for calculating semi-invariants. Teor. Veroyatn. Primen., 4, 2, 342 - 55Google Scholar
  12. 205.
    Liptser, R.S. and Shiryaev, A.N. (1968): Nonlinear filtering of diffusion type Markov processes. Tr. Mat. Inst. Steklova, 104, 135 - 80Google Scholar
  13. 212.
    Liptser, R.S. and Shiryaev, A.N. (1972): On absolute continuity of measures corresponding to diffusion type processes with respect to a Wiener measure. Izv. Akad. Nauk SSSR, Ser. Mat., 36, 4, 874 - 89Google Scholar
  14. 214.
    Liptser, R.S. and Shiryaev, A.N. (1989): Theory of Martingales. Kluwer, Dordrecht (Russian edition 1986 )MATHCrossRefGoogle Scholar
  15. 215.
    Liptser, R.S., Shiryaev, A.N. and Pukelsheim, F. (1982): Necessary and sufficient conditions for contiguity and entire asymptotic separation of probability measures. Russ. Math. Surv., 37, 6, 107 - 36MathSciNetMATHCrossRefGoogle Scholar
  16. 255.
    Prokhorov, Yu.V. (1956): Convergence of random processes and limit theorems of probability theory. Teor. Veroyatn. Primen., 1, 2, 177 - 238MATHGoogle Scholar
  17. 277.
    Shiryaev, A.N. (1960): Problems of spectral theory of higher moments, I. Teor. Veroyatn. Primen., 5, 3, 293 - 313Google Scholar
  18. 279.
    Shiryaev, A.N. (1966): Stochastic equations of nonlinear filtering of jump Markov processes. Probi. Peredachi Inf., 2, 3, 3 - 22Google Scholar
  19. 309.
    Wolfowitz, J. (1946): On sequential binomial estimation. Ann. Math. Stat., 17, 489 - 93MathSciNetMATHCrossRefGoogle Scholar
  20. 323.
    Yashin, A.I. (1985): Dynamics in survival analysis: conditional Gaussian property versus the Cameron-Martin formula. In: Statistics and Control of Stochastic Processes. N.V. Krylov et al. (eds), Translation series in Mathematics and Engineering, Optimization Software. Springer-Verlag, New York Berl in HeidelbergGoogle Scholar
  21. 327.
    Yershov, M.P. (1972): On representation of Itô processes. Teor. Veroyatn. Primen., 17, 1, 167 - 72Google Scholar
  22. 328.
    Yershov, M.P. (1972). On absolute continuity of measures corresponding to diffusion type processes. Teor. Veroyatn. Primen., 17, 1, 173 - 8.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Robert S. Liptser
    • 1
  • Albert N. Shiryaev
    • 2
  1. 1.Department of Electrical Engineering SystemsTel Aviv UniversityTel AvivIsrael
  2. 2.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations