Advertisement

Square Integrable Martingales and Structure of the Functionals on a Wiener Process

  • Robert S. Liptser
  • Albert N. Shiryaev
Chapter
  • 2k Downloads
Part of the Applications of Mathematics book series (SMAP, volume 5)

Abstract

Let (Ω, F, P) be a complete probability space, and let F = (F t ),t ≥ 0, be a nondecreasing (right continuous) family of sub-σ-algebras of F, each of which is augmented by sets from F having zero P-probability.

Keywords

Continuous Modification Simple Function Wiener Process Diffusion Type Stochastic Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Notes and References. 1

  1. 4.
    Anulova, A., Veretennikov, A., Krylov, N., Liptser, R.S. and Shiryaev, A.N. (1998): Stochastic Calculus. Encyclopedia of Mathematical Sciences. vol 45, Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  2. 40.
    Clark, I.M. (1970): The representation of functionals of Brownian motion by stochastic integrals. Ann. Math. Stat., 41, 4, 1282 - 95zbMATHCrossRefGoogle Scholar
  3. 41.
    Courrège, Ph. (1962-3): Intégrales stochastiques et martingales de carré intégrable. Sémin. Brelot—Choquet—Deny (7th year)Google Scholar
  4. 66.
    Fujisaki, M., Kallianpur, G. and Kunita, H. (1972): Stochastic differential equations for the nonlinear filtering problem. Osaka J. Math., 9, 1, 19 - 40MathSciNetzbMATHGoogle Scholar
  5. 106.
    Jacod, J. and Shiryaev, A.N. (1987): Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin Heidelberg New YorkzbMATHCrossRefGoogle Scholar

Notes and References.2

  1. 142.
    Karatzas, I. and Shreve, S.E. (1991): Brownian Motion and Stochastic Calculus. Springer-Verlag, New York Berl in HeidelbergzbMATHGoogle Scholar
  2. 137.
    Kallianpur, G. and Striebel, C. (1969): Stochastic differential equations occurring in the estimation of continuous parameter stochastic processes. Teor. Veroyatn. Primen., 14, 4, 597 - 622MathSciNetzbMATHGoogle Scholar
  3. 171.
    Kunita, H. and Watanabe, Sh. (1967): On square integrable martingales. Nagoya Math. J., 30, 209 - 45MathSciNetzbMATHGoogle Scholar
  4. 214.
    Liptser, R.S. and Shiryaev, A.N. (1989): Theory of Martingales. Kluwer, Dordrecht (Russian edition 1986 )zbMATHCrossRefGoogle Scholar
  5. 229.
    Meyer, P.A. (1966): Probabilités et Potentiel. Hermann, PariszbMATHGoogle Scholar
  6. 261.
    Revuz, D. and Yor, M. ( 1991, 1994, 1998 ): Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  7. 303.
    Wentzell, A.D. (1961): Additive functionals of a multivariate Wiener process. Dokl. Akad. Nauk SSSR, 130, 1, 13 - 6Google Scholar
  8. 326.
    Yershov, M.P. (1970): Sequential estimation of diffusion processes. Teor. Veroyatn. Primen., 15, 4, 705 - 17Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Robert S. Liptser
    • 1
  • Albert N. Shiryaev
    • 2
  1. 1.Department of Electrical Engineering SystemsTel Aviv UniversityTel AvivIsrael
  2. 2.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations