Cell Morphology and the Cytoskeleton

  • Kermit L. Carraway
  • Coralie A. Carothers Carraway
  • Kermit L. CarrawayIII

Abstract

Development of multicellular organisms can be viewed as an expression of infor-mation encoded in the nuclear genome to provide instructions for the synthe-sis of cell-and tissue-specific proteins. These proteins assemble into structures that allow the differentiated cell to perform its specialized functions. Specific cellular morphologies are as varied as their functions. The span of morphologies expressed by animal cells is astounding, ranging from the simple, spherical shape of the unperturbed lymphocytes to the spinal cord motor neuron which may extend meters in length. The morphology of differentiated cells is not necessarily static, since many cells are capable of radically altering their morphology according to changing conditions in their environment that require them to carry out different functions at different times. For example, neutrophils that circulate as spherical cells in the blood can, in response to signals produced by local tissue inflammation, adopt an “ameboid” migratory configuration to crawl between the lining cells of blood vessels, and home in on the site of inflammation. There they can reorganize their structure yet again to become phagocytic cells (1). The role and dynamics of morphology are not limited to cells of multicellular organisms. The budding yeast, Saccharomyces cerevisiae, responds to mating pheromone by extending a mating projection and by a rearrangement of its cytoskeleton and secretory apparatus (2). Such examples clearly demonstrate that cellular behavior is dependent on cell morphology, and that morphology is both dynamic and responsive to extracellular signals. These morphological changes are not limited to specialized cell functions. Many cells in the organism retain the ability to undergo cell division, often under the influence of signals from their environment or from other cells. This division involves massive internal morphological rearrangements.

Keywords

Hydrolysis Migration Fractionation Acetylcholine Neuroblastoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards SW. Biochemistry and Physiology of the Neutrophil. Cambridge, UK: Cambridge University Press.Google Scholar
  2. 2.
    Drubin DG, Nelson WJ. Origins of cell polarity. Cell 1996; 84: 335–344.PubMedCrossRefGoogle Scholar
  3. 3.
    Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, McNamee H, Mooney D, Plopper G, Sims S, Wang N. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 1994; 150:173–224.CrossRefGoogle Scholar
  4. 4.
    Ben-Ze’ev A. Animal cell shape changes and gene expression. BioEssays 1991; 13: 207–212.PubMedCrossRefGoogle Scholar
  5. 5.
    Bretscher A. Microfilament structure and function in the cortical cytoskeleton. Annu Rev Cell Biol 1991; 7: 337–374.PubMedCrossRefGoogle Scholar
  6. 6.
    Ampe C, Vanderkerckhove J. Actin-actin binding protein interfaces. Sem Cell Biol 1994; 5: 175–182.CrossRefGoogle Scholar
  7. 7.
    Kabsch W, Holmes KC. The actin fold. FASEB J 1995; 9: i67–174.Google Scholar
  8. 8.
    Pollard TD, Cooper JA. Actin and actin-binding proteins: a critical evaluation of mechanisms and functions. Ann Rev Biochem 1986; 55987–1035.Google Scholar
  9. 9.
    Theriot JA. Regulation of the actin cytoskeleton in living cells. Sem Cell Biol 1994; 5: 193–199.CrossRefGoogle Scholar
  10. 10.
    Fecheimer M, Zigmond SH. Focusing on unpolymerized actin. J Cell Biol 1993; 123: 1–5.CrossRefGoogle Scholar
  11. 11.
    Sun H-Q, Kwiatkowska K, Yin HL. Actin monomer binding proteins. Curr Opin Cell Biol 1995; 7: 102–110.PubMedCrossRefGoogle Scholar
  12. 12.
    Nachmias VT. Small actin-binding proteins: the (3-thymosin family. Curr Opin Cell Biol 1993; 5: 56–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Carlier M, Didry D, Erk I, Lepault J, van Troys ML, Vandekerckhove J, Perelroizen I, Yin H, Doi Y, Pantaloni D. Tß4 is not a simple G-actin sequestering protein and interacts with F-actin at high concentration. J Biol Chem 1996; 271: 9231–9239.PubMedCrossRefGoogle Scholar
  14. 14.
    Sun H-Q, Kwiatkowska K, Yin HL. ß-thymosins are not simple actin monomer buffering proteins: insights from overexpression studies. J Biol Chem 1996; 271: 9223–9230.PubMedCrossRefGoogle Scholar
  15. 15.
    Carlier MF, Pantaloni D. Actin assembly in response to extracellular signals: role of capping proteins, thymosin beta 4 and profilin. Sem Cell Biol 1994; 5: 183–191.CrossRefGoogle Scholar
  16. 16.
    Schafer DA, Cooper JA. Control of actin assembly at filament ends. Annu Rev Cell Dev Biol 1995; 11497–518.Google Scholar
  17. 17.
    Weeds A, Maciver S. F-actin capping proteins. Curr Opin Cell Biol 1993; 5: 63–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Hartwig JH. Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 1992; 118: 1421–1442.PubMedCrossRefGoogle Scholar
  19. 19.
    Moon A, Drubin DG. The ADF/cofilin proteins: stimulus responsive modulators of actin dynamics. Mol Biol Cell 1995; 6: 1423–1431.PubMedGoogle Scholar
  20. 20.
    Welch MD, Nallavarapu A, Rosenblatt J, Mitchison TJ. Actin dynamics in vivo. Curr Opin Cell Biol 1997; 9: 54–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Cao L-g, Fishkind DJ, Wang Y-1. Localization and dynamics of nonfilamentous actin in cultured cells. J Cell Biol 1993; 123: 173–181.PubMedCrossRefGoogle Scholar
  22. 22.
    Theriot JA. The cell biology of infection by intracellular bacterial pathogens. Annu Rev Cell Dev Biol 1995; 11: 213–239.CrossRefGoogle Scholar
  23. 23.
    Lasa I, Cossart P. Actin-based bacterial motility: towards a definition of the minimal requirements. Trends Cell Biol 1996; 6: 109–114.PubMedCrossRefGoogle Scholar
  24. 24.
    Peskin CS, Odell GM, Oster GF. Cellular motions and thermal fluctuations-the Brownian rachet. Biophys J 1993; 65: 3l6–324.CrossRefGoogle Scholar
  25. 25.
    Craig SW, Pollard TD. Actin-binding proteins. Trends Biochem Sci 1982; 7: 88–92.CrossRefGoogle Scholar
  26. 26.
    Lees-Miller JP, Helfman DM. The molecular basis for tropomyosin isoform diversity. BioEssays 1991; 13: 429–437.Google Scholar
  27. 27.
    Matsudaira P. Actin crosslinking proteins at the leading edge. Sem Cell Biol 1994; 5: 165–174.CrossRefGoogle Scholar
  28. 28.
    Hartwig JH, Kwiatkowski DJ. Actin-binding proteins. Curr Opin Cell Biol 1991; 3: 87–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Stossel TP. From signal to pseudopod: how cells control cytoplasmic actin assembly. J Biol Chem 1989; 264: 18261–18264.PubMedGoogle Scholar
  30. 30.
    Hartwig JH, Shevin P. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J Cell Biol 1986; 103: 1007–1020.PubMedCrossRefGoogle Scholar
  31. 31.
    Theriot JA, Mitchison TJ. Actin microfilament dynamics in locomoting cells. Nature 1991; 352: 126–131.PubMedCrossRefGoogle Scholar
  32. 32.
    Vale RD. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol 1996; 135: 291–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Mooseker MS, Cheney RE. Unconventional myosins. Annu. Rev. Cell Dev Biol 1995; 11: 633–675.CrossRefGoogle Scholar
  34. 34.
    Titus MA. Unconventional myosins: new frontiers in actin-based motors. Trends Cell Biol 1997; 7: 119–123.PubMedCrossRefGoogle Scholar
  35. 35.
    Maciver SK. Myosin II function in non-muscle cells. BioEssays 1996; 18: 179–182.PubMedCrossRefGoogle Scholar
  36. 36.
    Ostap EM, Pollard TD. Overlapping functions of myosin-I isoforms? J Cell Biol 1996; 133: 221–224.PubMedCrossRefGoogle Scholar
  37. 37.
    Brzeska H, Korn ED. Regulation of class I and class II myosins by heavy chain phosphorylation. J Biol Chem 1996; 271: 16983–16986.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown SS. Myosins in yeast. Curr Opin Cell Biol 1997; 9: 44–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Allred LE, Porter KR. Morphology of normal and transformed cells. In: Hynes RO, ed. Surfaces of normal and malignant cells. New York: John Wiley and Sons, 1979; 21–61.Google Scholar
  40. 40.
    Condeelis J. Life at the leading edge: the formation of cell protrusions. Annu Rev Cell Biol 1993; 9: 411–444.PubMedCrossRefGoogle Scholar
  41. 41.
    Mitchison TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell 1996; 84: 371–379.PubMedCrossRefGoogle Scholar
  42. 42.
    Carraway KL, Carraway CAC. Membrane-cytoskeleton interactions in animal cells. Biochim Biophys Acta 1989; 988: 147–171.PubMedCrossRefGoogle Scholar
  43. 43.
    Heintzelman MB, Mooseker MS. Assembly of the intestinal brush border. Curr. Topics Devel Biol 1992; 26: 93–122.CrossRefGoogle Scholar
  44. 44.
    Carraway KL, Huggins JW, Cerra RF, Yeltman DR, Carraway CAC. a-Actinin-containing branched microvilli isolated from an ascites adenocarcinoma. Nature 1980; 285: 508–510.PubMedCrossRefGoogle Scholar
  45. 45.
    Tilney LG, Tilney MS, DeRosier DJ. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev Cell Biol 1992; 8: 257–274.PubMedCrossRefGoogle Scholar
  46. 46.
    Ridley AJ. Membrane ruffling and signal transduction. BioEssays 1994; 16: 321–327.PubMedCrossRefGoogle Scholar
  47. 47.
    Pumplin DW, Bloch RJ. The membrane skeleton. Trends Cell Biol 1993; 3: 113–117.PubMedCrossRefGoogle Scholar
  48. 48.
    Yu J, Fischman DA, Steck TL. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1973; 1233–248.Google Scholar
  49. 49.
    Bennett V, Gilligan DM. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol 1993; 9: 27–66.PubMedCrossRefGoogle Scholar
  50. 50.
    Luna EJ, Hitt A. Cytoskeleton-plasma membrane interactions. Science 1992; 258: 955–964.PubMedCrossRefGoogle Scholar
  51. 51.
    Palek J, Sahr KE. Mutations of the red blood cell membrane proteins: from clinical evaluation to detection of the underlying genetic defect. Blood 1992; 80: 308–330.PubMedGoogle Scholar
  52. 52.
    Frojmovic MM, Milton JG. Human platelet size, shape, and related functions in health and disease. Physiol Rev 1982; 62: 185–261.PubMedGoogle Scholar
  53. 53.
    Fox JEB. The platelet cytoskeleton. Thromb Haemostasis 1993; 70: 884–893.Google Scholar
  54. 54.
    Fox JEB, Boyles JK, Berndt MC, Steffen PK, Anderson LK. Identification of a membrane skeleton in platelets. J Cell Biol1988; 106: 1525–1538.Google Scholar
  55. 55.
    Bearer EL. Platelet membrane skeleton revealed by quick-freeze deep-etch. Anat Rec 1990; 227: 1–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Hartwig JH, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1991; 112: 407–425.PubMedCrossRefGoogle Scholar
  57. 57.
    Fox JEB, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the membrane skeleton in mediating signal transduction: association of GP JIbIIIa, pp6o“c, pp62Y”, and the p21“’ GTPase-activating protein (GAP) with the membrane skeleton. J Biol Chem 1993; 268: 25973–25984.PubMedGoogle Scholar
  58. 58.
    Froehner SC. Regulation of ion channel distribution at synapses. Annu Rev Neurosci 1993; i6: 347–368.CrossRefGoogle Scholar
  59. 59.
    Kusumi A, Sako Y. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 1996; 8: 566–574.PubMedCrossRefGoogle Scholar
  60. 60.
    Carraway KL, Cerra RF, Jung G, Carraway CAC. Membrane-associated actin from microvillar membranes of ascites tumor cells. J Cell Biol 1982; 94: 624–630.PubMedCrossRefGoogle Scholar
  61. 61.
    Carraway CAC, Fang H, Ye X, Juang S-H, Liu Y, Carvajal M, Carraway KL. Membrane-microfilament interactions in ascites tumor cell microvilli. Identification and isolation of a large microfilament-associated glycoprotein complex. J Biol Chem 1991; 266: 16238–16246.PubMedGoogle Scholar
  62. 62.
    Abelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J 1990; 4: 2868–2880.Google Scholar
  63. 63.
    Ruoslahti E, Obrink B. Common principles in cell adhesion. Exp Cell Res 1996; 227: 1–11.PubMedCrossRefGoogle Scholar
  64. 64.
    Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251: 1451–1455.PubMedCrossRefGoogle Scholar
  66. 66.
    Heiska L, Kantor C, Parr T, Critchley DR, Vilja P, Gahmberg CG, Carpen O. Binding of the cytoplasmic domain of intercellular adhesion molecule-2 (ICAM2) to a-actinin. J Biol Chem 1996; 271: 26214–26219.PubMedCrossRefGoogle Scholar
  67. 67.
    Carraway CAC, Carraway, KL. In: Hesketh HE, Pryme IF, eds. Treatise on the Cytoskeleton, Greenwich, CT: JAI Press, 1996: 207–238.Google Scholar
  68. 68.
    Janmey PA. Phosphoinositides and calcium as regulators of cellular actin asembly and disassembly. Annu Rev Physiol 1994; 56: 169–191.PubMedCrossRefGoogle Scholar
  69. 69.
    Lamb JA, Allen PG, Tuan BY, Janmey PA. Modulation of gelsolin function: activation at low pH overides Ca’+ requirement. J Biol Chem 1993; 268: 8999–9004.PubMedGoogle Scholar
  70. 70.
    Isenberg G. Actin-binding protein-lipid interactions. Cell Motil Cytoskel 1991; 12: 136–144.Google Scholar
  71. 71.
    Lassing I, Lindberg U. Specific interaction between phosphatidylinositol 4,5bisphosphate and profilin. Nature 1985; 314: 472–474.PubMedCrossRefGoogle Scholar
  72. 72.
    Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD. The actin binding protein profilin binds to PIP,, and inhibits its hydrolysis by phospholipase C. Science 1990; 247: 1575–1578.PubMedCrossRefGoogle Scholar
  73. 73.
    Goldschmidt-Clermont PJ, Janmey PA. Profilin, a weak CAP for actin and RAS. Cell 1991; 66: 419–421.PubMedCrossRefGoogle Scholar
  74. 74.
    Vojtek A, Haarer B, Field J, Gerst J, Pollard TD, Brown S, Wigler M. Evidence for a functional link between profilin and CAP in the yeast S. cerevisiae. Cell 1991; 66: 497–505.PubMedCrossRefGoogle Scholar
  75. 75.
    Machasky LM, Goldschmidt-Clermont PJ, Pollard TD. The affinity of human platelet and Acanthamoeba profilin isoforms for polyphosphoinositides account for the relative abilities to inhibit phospholipase C. Cell Reg 1991; 1: 937–950.Google Scholar
  76. 76.
    Gottwald U, Brokamp R, Karakesisoglou I, Schleicher M, Noegel AA. Identification of acylase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin. Mol Biol Cell 1996; 7: 261–272.PubMedGoogle Scholar
  77. 77.
    Gieselmann R, Mann K. ASP-56, a new actin-sequestering protein from pig platelets with homology to CAP- an adenylate cyclase-associated protein from yeast. FEBS Let 1992; 298:149–153.CrossRefGoogle Scholar
  78. 78.
    Janmey PA, Stossel TP. Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 1987; 325: 362–364.PubMedCrossRefGoogle Scholar
  79. 79.
    Yonezawa N, Nishida E, lida K, Yahara I, Sakai H. Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J Biol 1990; 265: 8382–8386.Google Scholar
  80. 80.
    Heiss SG, Cooper JA Regulation of CapZ, an actin capping protein of chicken muscle, by anionic phospholipids. Biochemistry 1991; 30: 8753–8758.PubMedCrossRefGoogle Scholar
  81. 81.
    Fukumi K, Furuhashi K, Inagaki M, Endo T, Hatano S, Takenawa T. Requirement of phosphatidylinositol 4,5-bisphosphate for a-actinin function. Nature 1992; 359: 150–152.CrossRefGoogle Scholar
  82. 82.
    Furuhashi K, Inagaki M, Hatano S, Fukami K, Takenawa T. Inositol phospholipid-induced suppression of F-actin-gelating activity of smooth muscle filamin. Biochem Biophys Res Commun 1992; 184: 1261–1265.PubMedCrossRefGoogle Scholar
  83. 83.
    Janmey PA, Stossel TP. Gelsolin-polyphosphoinositide interaction. Full expression of gelsolin-inhibiting function by polyphosphoinositides in vesicular form and inactivation by dilution, aggregation, or masking of the inositol head group. J Biol Chem 1989; 264: 4825–4831.PubMedGoogle Scholar
  84. 84.
    Shariff A, Luna EJ. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science 1992; 256: 245–247.PubMedCrossRefGoogle Scholar
  85. 85.
    Hall A. Small GTP-binding proteins and the regulation of the cytoskeleton. Annu Rev Cell Biol 1994; 10: 31–54.PubMedCrossRefGoogle Scholar
  86. 86.
    Nobes CD, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995; 81: 53–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70: 389–399.PubMedCrossRefGoogle Scholar
  88. 88.
    Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–410.PubMedCrossRefGoogle Scholar
  89. 89.
    Chant J, Stowers L. GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 1995; 81: 1–4.PubMedCrossRefGoogle Scholar
  90. 90.
    Ridley AJ, Hall A. Signal transduction pathways regulating rho-mediated stress fiber formation: requirement for a tyrosine kinase. EMBO J 1994; 13: 2600–2610.PubMedGoogle Scholar
  91. 91.
    Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA. The small GTP-binding protein rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 1994; 79: 507–513.PubMedCrossRefGoogle Scholar
  92. 92.
    Manser E, Leung T, Salihuddin H, Zhao Z, Lim L. A brain serine/threonine protein kinase activated by cdc42 and raci. Nature 1994; 367: 40–46.PubMedCrossRefGoogle Scholar
  93. 93.
    Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenstrom P, Bridges T, Chant J, Hall A. Rac and cdc42 induce actin polymerization and GI cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 1996; 87: 519–529.PubMedCrossRefGoogle Scholar
  94. 94.
    Nagaoka R, Abe H, Obinata T. Site-directed mutagenesis of the phosphorylation site of cofilin: its role in cofilin-actin interaction and cytoplasmic localization. Cell Motil Cytoskel 1996; 35: 200–209.CrossRefGoogle Scholar
  95. 95.
    Davidson MM, Haslam RJ. Dephosphorylation of cofilin in stimulated platelets: roles for a GTP-binding protein and Ca“. Biochem J 1994; 30141–47.Google Scholar
  96. 96.
    Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends Biochem Sci 1992; 17: 438–442.PubMedCrossRefGoogle Scholar
  97. 97.
    Wu H, Parsons JT. Cortactin, an 8o/85-kilodalton pp6oa°° substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 1993; 120: 1417–1426.PubMedCrossRefGoogle Scholar
  98. 98.
    Chang J-H, Sill S, Settleman J, Parsons SJ. c-Src regulates the simultaneous rearrangement of actin cytoskeleton, pl9oRhoGAP, and pl2oRasGAP following epidermal growth factor stimulation. J Cell Biol 1995; 130: 355–368.PubMedCrossRefGoogle Scholar
  99. 99.
    Mitchison TJ. Compare and contrast actin filaments and microtubules. Mol Biol Cell 1992; 3: 1309–1315.PubMedGoogle Scholar
  100. 100.
    Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Science 1993; 104: 613–627.PubMedGoogle Scholar
  101. 101.
    Karsenti E, Maro B. Centrosomes and the spatial distribution of microtubules in animal cells. Trends Biochem Sci 1986; 11: 460–463.CrossRefGoogle Scholar
  102. 102.
    Terasaki M. Recent progress on structural interactions of the endoplasmic reticulum. Cell Motil Cytoskel 1990; 15: 71–75.CrossRefGoogle Scholar
  103. 103.
    Kreis TE. Role of microtubules in the organization of the Golgi apparatus. Cell Motil Cytoskel 1990; 15: 67–70.CrossRefGoogle Scholar
  104. 104.
    Vale RD. Intracellular transport using microtubule-based motors. Ann Rev Cell Biol 1987; 3: 347–378.PubMedCrossRefGoogle Scholar
  105. 105.
    McNiven MA, Porter KR. Organization of microtubules in centrosome-free cytoplasm. J Cell Biol 1988; 106: 1593–1605.PubMedCrossRefGoogle Scholar
  106. 106.
    Gibbons IR. Cilia and flagella of eukarotes. J Cell Biol 1981; 91:1078–1248.CrossRefGoogle Scholar
  107. 107.
    Gundersen GG, Bulinski JC. Selective stabilization of microtubules toward the direction of cell migration. Proc Natl Acad Sci USA 1988; 855:946–5950.Google Scholar
  108. 108.
    Gelfand VI, Bershadsky AD. Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol 1991; 7: 93–116.PubMedCrossRefGoogle Scholar
  109. 109.
    Kirschner MW, Mitchison TJ. Beyond self assembly: from microtubules to morphogenesis. Cell 1986; 45: 329–342.PubMedCrossRefGoogle Scholar
  110. 110.
    Walker RA, O’Brien ET, Pryer NK, Sobeiro MF, Voter WA, Erickson HP, Salmon ED. Dynamic instability of individual, MAP-free microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 1988; 107: 1437–1448.PubMedCrossRefGoogle Scholar
  111. 111.
    Carlier M, Pantaloni D. Kinetic analysis of guanosine 5’-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 1981; 20: 1918–1924.PubMedCrossRefGoogle Scholar
  112. 112.
    Simon JR, Parsons SF, Salmon ED. Buffer conditions and non-tubulin factors critically affect the microtubule dynamic instability of sea urchin egg tubulin. Cell Motil Cytoskel 1992; 21: 1–14.CrossRefGoogle Scholar
  113. 113.
    Avila J. Microtubule functions. Life Sci 1992; 50: 327–334.PubMedCrossRefGoogle Scholar
  114. 114.
    Edde B, Rossier J, Le Caer J, Desbruyeres E, Gros F, Denoulet P. Posttranslational glutamylation of a-tubulin. Science 1990; 247: 83–85.PubMedCrossRefGoogle Scholar
  115. 115.
    Boucher D, Larcher JC, Gros F, Denoulet P. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein tau and tubulin. Biochemistry 1994; 33:12471–12477.Google Scholar
  116. 116.
    Maccioni RB, Cambiazo V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev 1995; 75835–864.Google Scholar
  117. 117.
    Hirokawa N. Microtubule organization and dynamics dependent on microtubuleassociated proteins. Curr Opin Cell Biol 1994; 674–81.Google Scholar
  118. 118.
    Mandelkow E, Mandelkow E-M. Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 1995; 7: 72–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Joshi HC. Y-Tubulin: the hub of cellular microtubule assemblies. BioEssays 1994; 15:637–643.Google Scholar
  120. 120.
    Zheng Y, Jung M, Oakley BR. y-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 1991; 65: 817–823.PubMedCrossRefGoogle Scholar
  121. 121.
    Horio T, Oakley BR. Human y-tubulin functions in fission yeast. J Biol Chem 1994; 269: 1465–1473.Google Scholar
  122. 122.
    Raff JW. Centrosomes and microtubules: wedded with a ring. Trends Cell Biol 1996; 6: 248–251.PubMedCrossRefGoogle Scholar
  123. 123.
    Schoenfeld TA, Obar RA. Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int Rev Cytol 1994; 15:67–137.CrossRefGoogle Scholar
  124. 124.
    MacRae TH. Microtubule organization by cross-linking and bundling proteins. Biochim Biochim Acta 1992; 1160: 145–155.CrossRefGoogle Scholar
  125. 125.
    Chen J, Kanai Y, Cowan NJ, Hirokawa N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 1992; 360: 674–677.PubMedCrossRefGoogle Scholar
  126. 126.
    Shea TB, Beermann ML, Nixon RA, Fischer I. Microtubule-associated protein tau is required for axonal neurite elaboration by neuroblastoma cells. J Neurosci Res 1992; 43: 363–374.CrossRefGoogle Scholar
  127. 127.
    Caceres A, Mautino J, Kosik K. Suppression of MAP2 in cultured cerebelar macroneurons inhibits minor neurite formation. Neuron 1992; 9: 607–618.PubMedCrossRefGoogle Scholar
  128. 128.
    Harada A, Oguchi K, Okabe S, Kuna J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N. Altered microtubule organization in small-caliber axons of mice lacking tau protein. Nature 1994; 369: 488–491.PubMedCrossRefGoogle Scholar
  129. 129.
    Litman P, Barg J, Rindzooski L, Ginzburg I. Subcellular localization of tau mRNA in differentiating neuronal cell culture: implications for neuronal polarity. Neuron 1993; 10: 627–638.PubMedCrossRefGoogle Scholar
  130. 130.
    Kanai Y, Chen J, Hirokawa N. Microtubule bundling by tau proteins in vitro: analysis of functional domains. EMBO J 1992; 11: 3953–3961.PubMedGoogle Scholar
  131. 131.
    Aniello FD, Couchie A, Bridoux A, Gripois D, Nunez J. The splicing of juvenile and adult tau mRNA variant is regulated by thyroid hormone. Proc Natl Acad Sci USA 1991; 88: 4035–4038.PubMedCrossRefGoogle Scholar
  132. 132.
    Doll T, Meichsner M, Riederer BM, Honegger P, Matus A. An isoform of microtubule-associated protein 2 (MAP2) containing four repeats of the tubulin binding motif. J Cell Sci 1993; 106: 633–640.PubMedGoogle Scholar
  133. 133.
    Illenberger S, Drewes G, Trinczek B, Biernat J, Meyer HE, Olmsted JB, Mandelkow E-M, Mandelkow E. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase piiomark. Phosphorylation sites and regulation of microtubule dynamics. J Biol Chem 1996; 271: 10834–10843.PubMedCrossRefGoogle Scholar
  134. 134.
    Patterson CL Jr, Flavin M. A brain phosphatase with specificity for microtubuleassociated protein-2. J Biol Chem1986; 261: 7791–7796.Google Scholar
  135. 135.
    Vale RD. Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell 1991; 64: 827–839.PubMedCrossRefGoogle Scholar
  136. 136.
    Caplow M. Microtubule dynamics. Curr Opin Cell Biol 1992; 4: 58–65.PubMedCrossRefGoogle Scholar
  137. 137.
    Harte PJ, Kankel DR. Genetic analysis of mutations at the Glued locus and interacting loci in Drosophila melanogaster. Genetics 1982; 101: 477–501.PubMedGoogle Scholar
  138. 138.
    Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 1991; 115: 1639–1650.PubMedCrossRefGoogle Scholar
  139. 139.
    Rasenick MM, Caron MG, Dolphin AC, Kobilka BK, Schultz G. in Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Cuello AC, Collier B, eds., Burkhauser Verlag, Basel, Switzerland, 1995; 91–103.CrossRefGoogle Scholar
  140. 140.
    Rickard JE, Kreis TE. CLIPs for organelle-microtubule interactions. Trends Cell Biol 1996; 6: 178–183.PubMedCrossRefGoogle Scholar
  141. 141.
    Skoufias DA, Scholey JM. Cytoplasmic microtubule-based motor proteins. Curr Opin Cell Biol 1993; 5: 95–104.PubMedCrossRefGoogle Scholar
  142. 142.
    Thaler CD, Haimo LT. Microtubules and microtubule motors: mechanisms of regulation. Int Rev Cytol 1996; 164: 269–327.PubMedCrossRefGoogle Scholar
  143. 143.
    Barton NR, Goldstein LS. Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci USA 1996; 93: 1735–1742.PubMedCrossRefGoogle Scholar
  144. 144.
    Bloom GS. Motor proteins for cytoplasmic microtubules. Curr Opin Cell Biol 1992; 4: 66–73.PubMedCrossRefGoogle Scholar
  145. 145.
    Endow SA, Titus, MA. Genetic approaches to molecular motors. Annu Rev Cell Biol 1992; 8: 29–66.PubMedCrossRefGoogle Scholar
  146. 146.
    Vallee RB, Sheetz MP. Targeting of motor proteins. Science 1996; 271: 1539–1544.PubMedCrossRefGoogle Scholar
  147. 147.
    Moore JD, Endow SA. Kinesin proteins: a phylum of motors for microtubule-based motility. BioEssays 1996; 18: 207–219.PubMedCrossRefGoogle Scholar
  148. 148.
    Brady ST. A kinesin medley: biochemical and functional heterogeneity. Trends Cell Biol 1995; 5: 159 - i64.PubMedCrossRefGoogle Scholar
  149. 149.
    Selden SC, Pollard TD. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem 1983; 258: 7064–7071.PubMedGoogle Scholar
  150. 150.
    Olmsted JB. Microtubule-associated proteins. Annu Rev Cell Biol 1986; 2: 421–458.PubMedCrossRefGoogle Scholar
  151. 151.
    Blose SH, Melttzer D, Feramisco J. 10 nm intermediate filaments induced to collapse in living cells microinjected with monoclonal and polyclonal antibodies against tubulin. J Cell 1983; 96: 847–858.Google Scholar
  152. 152.
    Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature 1980; 283: 249–256.PubMedCrossRefGoogle Scholar
  153. 153.
    Skalli O, Goldman RD. Recent insights into the assembly, dynamics, and function of intermediate filament networks. Cell Motil Cytoskel 1991; 19: 67–69.CrossRefGoogle Scholar
  154. 154.
    Steinert PM, Parry DAD. Intermediate filaments: conformity and diversity of expression and structure. Annu Rev Cell Biol 1985; 1: 41–65.PubMedCrossRefGoogle Scholar
  155. 155.
    Steinert PM, Roop DR. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem 1988; 57: 593–625.PubMedCrossRefGoogle Scholar
  156. 156.
    Albers K, Fuchs E. The molecular biology of intermediate filament proteins. Int Rev Cytol 1992; 134: 243–279.PubMedCrossRefGoogle Scholar
  157. 157.
    Stewart M. Intermediate filament structure and assembly. Curr Opin Cell Biol 1993; 5: 3–11.PubMedCrossRefGoogle Scholar
  158. 158.
    Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 1994; 63: 345–382.PubMedCrossRefGoogle Scholar
  159. 159.
    Coulombe PA. The cellular and molecular biology of keratins: beginning a new era. Curr Opin Cell Biol 1993; 5: 17–29.PubMedCrossRefGoogle Scholar
  160. 160.
    Moll R, Franke WW, Schiller D, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982; 31: 11–24.PubMedCrossRefGoogle Scholar
  161. 161.
    Quinlan RA, Franke WW. Heteropolymer filaments of vimentin and desmin in vascular smooth muscle tissue and cultured baby hamster kidney cells demonstrated by chemical crosslinking. Proc Natl Acad Sci USA 1982; 79: 3452–3456.PubMedCrossRefGoogle Scholar
  162. 162.
    Steinert PM, Idler WW, Cabral F, Gottesman MM, Goldman RD. In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells. Proc Natl Acad Sci USA 1981; 78: 3692–3696.PubMedCrossRefGoogle Scholar
  163. 163.
    Monteiro MJ, Cleveland DW. Expression of NF-L and NF-M in fibroblasts reveals co-assembly of neurofilament and vimentin subunits. J Cell Biol 1989; 108: 579–593.PubMedCrossRefGoogle Scholar
  164. 164.
    Osborn M, Franke W, Weber K. Direct demonstration of the presence of two immunologically distinct intermediate-sized filament systems in the same cell by double immunofluorescence microscopy. Vimentin and cytokeratin fibers in cultured epithelial cells. Exp Cell Res 1980; 125: 37–46.PubMedCrossRefGoogle Scholar
  165. 165.
    Osborn MJ. Components of the cellular cytoskeleton: a new generation of markers of histogenetic origin? J Invest Dermatol 1983; 81:l04–107.CrossRefGoogle Scholar
  166. 166.
    Portier MM, de Nechaud B, Gros F. Peripherin, a new member of the intermediate filament protein family. Dev Neurosci 1983; 6: 335–344.PubMedCrossRefGoogle Scholar
  167. 167.
    Liem RKH. Neuronal intermediate filaments. Curr Opin Cell Biol 1990; 2: 86–90.PubMedCrossRefGoogle Scholar
  168. 168.
    Pachter JS, Liem RKH. a-Internexin, a 66-kD intermediate filament-binding protein from mammalian central nervous tissues. J Cell Biol 1985; 101: 1316–1322.PubMedCrossRefGoogle Scholar
  169. 169.
    Hisanaga S, Hirokawa N. Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing. J Mol Biol 1988; 202: 297–305.PubMedCrossRefGoogle Scholar
  170. 170.
    Lowinger L, McKeon F. Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm. EMBO J 1988; 7: 2301–2309.Google Scholar
  171. 171.
    Lendahl U, Zimmerman LB, McKay RDG. CNS stem cells express a new class of intermediate filament protein. Cell 1990; 60: 585–595.PubMedCrossRefGoogle Scholar
  172. 172.
    Gounari F, Merdes A, Quinlan R, Hess J, FitzGerald PG, Ouzounis CA, Georgatos SD. Bovine filensin possesses primary and secondary structure similarity to intermediate filament proteins. J Cell Biol 1993; 121: 847–853.PubMedCrossRefGoogle Scholar
  173. 173.
    Klymkowsky MW. Intermediate filaments: new proteins, some answers, more questions. Curr Opin Cell Biol 1995; 7: 46–54.PubMedCrossRefGoogle Scholar
  174. 174.
    Heins S, Aebi U. Making heads and tails of intermediate filament assembly, dynamics and networks. Curr Opin Cell Biol 1994; 6: 25–33.PubMedCrossRefGoogle Scholar
  175. 175.
    Heins S, Wong PC, Muller S, Goldie K, Cleveland DW, Aebi U. The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J Cell Biol 1993; 123: 1517–1523.PubMedCrossRefGoogle Scholar
  176. 176.
    Foisner R. Dynamic organization of intermediate filaments and associated proteins during the cell cycle. BioEssays 1997; 19: 297–305.PubMedCrossRefGoogle Scholar
  177. 177.
    Inagaki M, Matsuoka Y, Tsujimura, K, Ando S, Tokui T, Takahashi T, Inagaki N. Dynamic property of intermediate filaments: regulation by phosphorylation. BioEssays 1996; 18: 481–487.CrossRefGoogle Scholar
  178. 178.
    Geisler N, Weber K. Phosphorylation of desmin in vitro inhibits formation of intermediate filaments: identification of three kinase A sites in the aminoterminal head domain. EMBO J 1988; 7: 15–20.PubMedGoogle Scholar
  179. 179.
    Matsuoka Y, Nishizawa K, Yano T, Shibata M, Ando S, Takahashi T, Inagaki M. The different protein kinases act on a different time schedule as glial filament kinases during mitosis. EMBO J 1992; 11:2895–2902.PubMedGoogle Scholar
  180. 180.
    Hisanaga S, Kusubata M, Okumura E, Kishimoto T. Phosphorylation of neuro-filament H subunit at the tail domain by CDC2 kinase dissociates the association to microtubules. J Biol Chem 1991; 266: 21798–217803.Google Scholar
  181. 181.
    Gutkind JS, Vitale-Cross J. The pathway linking small GTP-binding proteins of the Rho family to cytoskeletal components and novel signaling kinase cascades. Sem Cell Devel Biol 1996; 7: 683–690.CrossRefGoogle Scholar
  182. 182.
    Omary MB, Baxter GT, Chou CF, Riopel CL, Lin WY, Strulovici B. PKC kinase associates with and phosphorylates cytokeratin 8 and 18. J Cell Biol 1991; 117: 583–593.CrossRefGoogle Scholar
  183. 183.
    Chou C-F, Omary MB. Mitotic arrest-associated enhancement of 0-linked glycosylation and phosphorylation of human keratins 8 and 18. J Biol Chem 1993; 268: 4465–4472.PubMedGoogle Scholar
  184. 184.
    Ingber DE. Integrins as mechanochemical transducers. Curr Opin Cell Biol 1991; 3: 841–848.PubMedCrossRefGoogle Scholar
  185. 185.
    Eckert BS, Daley RA, Parysek LM. Assembly of keratin onto PtKi cytoskeletons: evidence for an intermediate filament organizing center. J Cell Biol 1982; 92: 575–578.PubMedCrossRefGoogle Scholar
  186. 186.
    Georgatos SD, Weaver DC, Marchesi VT. Site specificity in vimentin-membrane interactions: intermediate filament subunits associate with the plasma membrane via their head domains. J Cell Biol 1985; 100: 1962–1967.PubMedCrossRefGoogle Scholar
  187. 187.
    Garrod DR. Desmosomes and hemidesmosomes. Curr Opin Cell Biol 1993; 530–40.Google Scholar
  188. 188.
    Troyanovsky SM, Eshkind LG, Troyanovsky RB, Leube RE, Franke WW. Contributions of cytoplasmic domains of desmosomal cadherins to desmosome assembly and intermediate filament anchorage. Cell 1993; 72: 561–574.PubMedCrossRefGoogle Scholar
  189. 189.
    Foisner R, Wiche G. Intermediate filament-associated proteins. Curr Opin Cell Biol 1991; 3: 75–81.PubMedCrossRefGoogle Scholar
  190. 190.
    Wiche G. Plectin: general overview and appraisals of its potential role as a subunit protein of the cytomatrix. Crit Rev Biochem Mol Biol 1989; 24: 41–67.PubMedCrossRefGoogle Scholar
  191. 191.
    Chou Y-H, Skalli 0, Goldman RD. Intermediate filaments and cytoplasmic networking: new connections and more functions. Curr Opin Cell Biol 1997; 9: 49–53.PubMedCrossRefGoogle Scholar
  192. 192.
    Foisner R, Bohn W, Mannweiler K, Wiche G. Distribution and ultrastructure of plectin arrays in subclones of rat glioma C6 cells differing in intermediate filament protein (vimentin) expression. J Struct Biol 1995; 115: 304–317.PubMedCrossRefGoogle Scholar
  193. 193.
    Svitkina TM, Verkhovsky AB, Borisy GG. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 1996; 135: 991–1007.PubMedCrossRefGoogle Scholar
  194. 194.
    Yang Y, Dowling J, Yu Q-C, Kouklis P, Cleveland DW, Fuchs E. An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell 1996; 86: 655–665.PubMedCrossRefGoogle Scholar
  195. 195.
    Leibowitz D, Kopan R, Fuchs E, Sample J, Kieff E. An Epstein-Barr virus transforming protein associates with vimentin in lymphocytes. Mol Cell Biol 1987; 72299–2308.Google Scholar
  196. 196.
    White E, Cipriani R. Specific disruption of intermediate filaments and the nuclear lamina by the 19-kDa product of the adenovirus EiB oncogene. Proc Natl Acad Sci USA 1989; 86: 9886–9890.PubMedCrossRefGoogle Scholar
  197. 197.
    Doorbar J, Ely S, Sterling J, McLean C, Crawford I. Specific interaction between HPV-16 E1–E4 and cytokeratins results in collapse of epithelial cell intermediate filament networks. Nature 1991; 352:824–827.PubMedCrossRefGoogle Scholar
  198. 198.
    Klymkowsky MW, Maynell LAL, Nislow C. Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA vgl. J Cell Biol 1991; 114: 787–797.PubMedCrossRefGoogle Scholar
  199. 199.
    Venetianer A, Schiller DL, Magin T, Franke WW. Cessation of cytokeratin expression in a rat hepatoma cell line lacking differentiated functions. Nature 1983; 305: 730–733.PubMedCrossRefGoogle Scholar
  200. 200.
    Hedberg KK, Chen L-B. Absence of intermediate filaments in a human adrenal cortex carcinoma-derived cell line. Exp Cell Res 1986; 163: 509–517.PubMedCrossRefGoogle Scholar
  201. 201.
    Colucci-Guyon E. Portier M-M, Dunia I, Paulin D, Pournin S, Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 1994; 79: 679–694.PubMedCrossRefGoogle Scholar
  202. 202.
    Goldman RD, Khuon S, Chou YH, Opal P, Steinert PM. The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol 1996; 134: 97 1983.Google Scholar
  203. 203.
    Hendrix MJC, Seftor EA, Chu Y-W, Trevor KT, Seftor REB. Role of intermediate filaments in migration, invasion and metastasis. Cancer Metas Rev 1996; 15: 507525.Google Scholar
  204. 204.
    Cleveland DW. Neuronal growth and death: order and disorder in the axoplasm. Cell 1996; 84: 663–666.PubMedCrossRefGoogle Scholar
  205. 205.
    Traub P, Shoeman RL. Intermediate filament proteins: cytoskeletal elements with gene-regulatory function? Int Rev Cytol 1994; 154: 1–103.PubMedCrossRefGoogle Scholar
  206. 206.
    Li H, Choudhary SK, Milner DJ, Munir MI, Kuisk IR, Capetanaki Y. Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators myoD and myogenin. J Cell Biol 1994; 124: 827–841.PubMedCrossRefGoogle Scholar
  207. 207.
    Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 1997; 94: 849–854.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Kermit L. Carraway
    • 1
  • Coralie A. Carothers Carraway
    • 1
  • Kermit L. CarrawayIII
    • 2
  1. 1.School of MedicineUniversity of MiamiMiamiUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations