The Maximal Torus of a Compact Lie Group

  • Theodor Bröcker
  • Tammo tom Dieck
Part of the Graduate Texts in Mathematics book series (GTM, volume 98)


In this chapter we show that every connected compact Lie group G contains a maximal torus T. This maximal torus is unique up to conjugation, and its conjugates cover G. If N is the normalizer of T, then the Weyl group W = N/T is finite and operates effectively on T. Thus there is a one-to-one correspondence between functions on G which are invariant under conjugation and functions on T which are invariant under the action of W. In particular, the characters of G are the W-invariant characters of T. For this reason understanding the operation of the Weyl group on the maximal torus is important to representation theory. In the third section we compute the maximal tori and Weyl groups of the classical Lie groups, and in the last section we give a generalization which handles the case of nonconnected groups.


Conjugacy Class Weyl Group Maximal Torus Cyclic Subgroup Closed Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Theodor Bröcker
    • 1
  • Tammo tom Dieck
    • 2
  1. 1.Fachbereich MathematikUniversität RegensburgRegensburgFederal Republic of Germany
  2. 2.Mathematisches InstitutUniversität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations