The Genesis of Quadratic Reciprocity

  • Franz Lemmermeyer
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

In this first chapter we will present the fathers of the quadratic reciprocity law. Although some results on quadratic residues modulo 10 have been found very early on (see [Ene]) — in connection with the problem of characterizing perfect squares — the history of modern number theory starts with the editions of the books of Diophantus, in particular with the commented edition by Bachet in 1621.

Keywords

Europe Diesel Tate Rosen Trop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Additional References

  1. [AMM]
    L.M. Adleman, K. Manders, G. Miller, On taking roots in finite fields, Proc. 18th Annual Symp. Computer Science 1977, pp. 175–178Google Scholar
  2. [AF]
    A.G. Agargün, C.R. Fletcher, al-Farisi and the fundamental theorem of arithmetic, Historia Math. 21 (1994), 162–173MathSciNetCrossRefMATHGoogle Scholar
  3. [Ahl]
    H. Ahlborn, Uber Berechnung von Summen von größten Ganzen auf geometrischem Wege nach der von Eisenstein zuerst angewandten Methode, Pr. Hamburg (1881), JFM 13. 0141. 04Google Scholar
  4. [AZ]
    M. Aigner, G.M. Ziegler, Proofs from THE BOOK, Springer Verlag 1998Google Scholar
  5. [Ala]
    N. S. Aladov, Sur la distribution des résidus quadratiques et non-quadratiques d’un nombre premier p dans la suite 1, 2,…,p - 1,Recueil Math. (Moscow Math. Soc.) 18 (1896), 61–75; FdM 27 (1896), 146; FdM 30 (1899), 184; BSMA (2) 21 (1897), 63–64Google Scholar
  6. [An1]
    A. A. Antropov, Partitioning of forms into genera and the reciprocity law in papers of L. Euler, Vopr. Istor. Est. Tekh. (1989), 56–57Google Scholar
  7. [An2]
    A. A. Antropov, On Euler’s partition of forms into genera, Historia Math. 22 (1995), 188–193Google Scholar
  8. [Art]
    E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen, Math. Z. 19 (1924), 153–246Google Scholar
  9. [Aul]
    A. Aubry, L’OEuvre arithmétique d’Euler, L’Ens. Math. 11 (1909), 329–356Google Scholar
  10. [Au2]
    A. Aubry, Sur les travaux arithmétiques de Lagrange, de Legendre et de Gauss, L’Ens. Math. 11 (1909), 430–450Google Scholar
  11. [Ba]
    E. Bach, A note on square roots in finite fields, IEEE Trans. Inf. Theory 36 (1990), 1494–1498MathSciNetCrossRefMATHGoogle Scholar
  12. [Bml]
    P. Bachmann, Die analytische Zahlentheorie, Leipzig 1894Google Scholar
  13. [Bm2]
    P. Bachmann, Uber Gauf3’ zahlentheoretische Arbeiten, Abh. Ges. Wiss. Nachr. Gött., Math.-Phys. Kl. 1911, 455–508; FdM 42 (1911), 201–202Google Scholar
  14. [BI]
    R.J. Backlund, Ober die Differenzen zwischen den Zahlen, die zu den n ersten Primzahlen teilerfremd sind, Comment. in honorem Ernesti Leonardi Lindelöf, Helsinki 1929Google Scholar
  15. [Bas]
    H. Bass, Algebraic K-Theory, New York 1968Google Scholar
  16. [Ben]
    A.A. Bennett, Large primes have four consecutive quadratic residues, Tohôku Math. J. 26 (1925), 53–57Google Scholar
  17. [BSW]
    K.R. Biermann, E. Schuhmann, H. Wussing, O. Neumann, Mathematisches Tagebuch 1796–1814 von Carl Friedrich Gauss, 3rd edition, Ostwalds Klassiker 256, Leipzig 1981Google Scholar
  18. [BM]
    R.G. Bierstedt, W.H. Mills, On the bound for a pair of consecutive quartic residues of a prime, Proc. Am. Math. Soc. 14 (1963), 628–632MathSciNetCrossRefMATHGoogle Scholar
  19. [Br]
    A. Brauer, Ober Sequenzen von Potenzresten, Sitzungsbericht Preuß. Akad. Wiss. 1928, 9–26Google Scholar
  20. [BZ]
    A. Brauer, H. Zeitz, Ober eine zahlentheoretische Behauptung von Legendre, Sitzber. Berliner Math. Ges. 1930, 116–124; see also A. Brauer, Nachruf auf Hermann Zeitz, ibid. 1933, 2–5Google Scholar
  21. [BR]
    A. Brauer, R.L. Reynolds, On a theorem of Aubry-Thue, Canadian J. Math. 3 (1951), 367–374MathSciNetMATHGoogle Scholar
  22. [Bri]
    J. Brillhart, Note on representing a prime as a sum of two squares, Math. Comp. 26 (1972), 1011–1013Google Scholar
  23. [BLL]
    J. Brillhart, D.H. Lehmer, E. Lehmer, Bound for pairs of consecutive seventh and higher power residues, Math. Comput. 18 (1964), 397–407MathSciNetMATHGoogle Scholar
  24. [Buh]
    W.K. Bühler, Gauss: A biographical study, Springer 1981Google Scholar
  25. [Bug]
    N.V. Bugaieff, Die Lösung der Congruenzen 2ten Grades in Bezug auf einen Primzahlmodulus, Mosk. Math. Samml. X (1882); FdM 14 (1882), 126–127Google Scholar
  26. [Bull K]
    Bull K. Burde, Verteilungseigenschaften von Potenzresten, J. Reine Angew. Math. 249 (1971), 133–172Google Scholar
  27. [Bu2]
    K. Burde, Sequenzen der Länge 2 von Rest klassencharakteren, J. Reine Angew. Math. 272 (1973), 194–202Google Scholar
  28. [Bu3]
    K. Burde, Ober allgemeine Sequenzen der Länge 3 von Legendre-Symbolen, J. Reine Angew. Math. 282 (1975), 203–216Google Scholar
  29. [Bu4]
    K. Burde, Eine Verteilungseigenschaft der Legendre-Symbole, J. Number Theory 12 (1980), 273–277Google Scholar
  30. [Bur]
    J.J. Burkhardt, Euler’s work on number theory: a concordance for A. Weil’s Number Theory, Historia Math. 13 (1986), 28–35Google Scholar
  31. [Bus]
    W.H. Bussey, Fermat’s method of infinite descent, Amer. Math. Monthly 25 (1918), 333–337Google Scholar
  32. [Car]
    P.A. Caris, A solution of the quadratic congruence modulo p, p = 8n+ 1, n odd, Amer. Math. Monthly 32 (1925), 294–297MathSciNetCrossRefMATHGoogle Scholar
  33. [Crl]
    L. Carlitz, Quadratic residues and Tchebycheff polynomials, Portugal. Math. 18 (1959), 193–198Google Scholar
  34. [Crt]
    P. Cartier, Sur une generalisation du transfert en theorie des groupes, Enseign. Math. 16 (1970), 49–57Google Scholar
  35. [Chl]
    T.-H. Chang, Über aufeinanderfolgende Zahlen, von denen jede mindestens einer von n linearen Kongruenzen genügt, deren Moduln die ersten n Primzahlen sind, Schriften math. Serein. u. Inst. f. angew. Math. Univ. Berlin 4 (1938), Heft 2, 35–55Google Scholar
  36. [Ch2]
    T.-H. Chang, Lösung der Kongruenz x 2–a (mod p) nach einem Primzahlmodul p = 4n + 1, Math. Nachr. 22 (1960), 136–142Google Scholar
  37. [Che]
    P. Chebyshev, Theorie der Congruenzen (Russ.), 1849; German Transi. 1889Google Scholar
  38. [CC]
    P. Chowla, S. Chowla, Problems on periodic simple continued fractions, Proc. Natl. Acad. S.I. USA 69 (1972), 37–45MathSciNetCrossRefMATHGoogle Scholar
  39. [Cip]
    M. Cipolla, Un metodo per la risoluzione della congruenza di secondo grado, Rend. Accad. Sci. Fis. Mat. Napoli (3) 9 (1903), 153–163Google Scholar
  40. [CM]
    T. Cochrane, P. Mitchell, Small solutions of the Legendre Equation, J. Number Theory 70 (1998), 62–66MathSciNetCrossRefMATHGoogle Scholar
  41. [Coh]
    H. Cohen, A course in computational algebraic number theory, GTM 138, Springer-Verlag 1993Google Scholar
  42. [CL]
    G.E. Collins, R.G.K. Loos, The Jacobi symbol algorithm, SIGSAM Bull. 16 (1982), 12–16CrossRefMATHGoogle Scholar
  43. [Cor]
    Ch. Cornaros, On Grzegorczyk induction, Ann,. Pure Appl. Logic 74 (1995), 1–21Google Scholar
  44. [Cre]
    J.E. Cremona, Efficient solution of rational conics, preprint 1998 [Cuc] R. Cuculière, Le plus beau théorème de Fermat, Pour la Science, April 1986Google Scholar
  45. [Day]
    H. Davenport, The Higher Arithmetic. An introduction to the theory of numbers, 6th ed Cambridge Univ. Press 1992Google Scholar
  46. [DH]
    H. Davenport, M. Hall, On the equation ax e + by 2 + cz 2 = 0, Quart. J. Math. 19 (1948), 189–192MathSciNetCrossRefMATHGoogle Scholar
  47. [Ded]
    R. Dedekind, Abriss einer Theorie der höheren Kongruenzen in Bezug auf einen reellen Primzahl-Modulus, J. Reine Angew. Math 54 (1857), 1–26; Ges. Math. Werke I, 40–67Google Scholar
  48. [Del]
    P. Delsarte, A generalization of the Legendre symbol for finite abelian groups, Discrete Math. 27 (1979), 187–192MathSciNetCrossRefMATHGoogle Scholar
  49. [Dil]
    L.E. Dickson, History of the Theory of Numbers, vol I, Chelsea Publishing, New York 1952Google Scholar
  50. [Di2]
    L.E. Dickson, History of the Theory of Numbers, vol II, Chelsea Publishing, New York 1952Google Scholar
  51. [Dir]
    L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Faktor sind, unendlich viele Primzahlen enthält, Abh. Preuss. Akad. Wiss. (1837), 45–81; Werke I (1889), 313–342Google Scholar
  52. [Doe]
    K. Dörge, Zur Verteilung der quadratischen Reste, Jahresb. DMV 38 (1929), 41–49; FdM 55 I (1929), 95–95Google Scholar
  53. [Dup]
    A. Dupré, Examen d’un proposition de Legendre relative à la théorie des nombres, ouvrage placé en premier ligne par l’Academie des Sciences dans le concours pour le grand prix de Mathématiques de 1858, Paris (1859), Mallet-BachelierGoogle Scholar
  54. [Edl]
    H.M. Edwards, The background of Kummer’s proof of Fermat’s last theorem for regular primes, Arch. Hist. Exact Sci. 14 (1975), 219–236.Google Scholar
  55. [Ed2]
    H.M. Edwards, Postscript to “The background of Kummer’s proof ”, Arch. Hist. Exact Sci. 18 (1977), 381–394Google Scholar
  56. [Ene]
    G. Eneström, Ober die Geschichte der quadratischen und kubischen Reste im christlichen Mittelalter, (Anfrage 140), Bibl. Math. (3), 9 (1908), 265–266Google Scholar
  57. [Err]
    A. Errera, Sur un théorème de Legendre, Bull. Sci. Math. (2) 50 (1926), 166–168Google Scholar
  58. [Eul]
    L. Euler, Demonstrationes circa residua ex divisione potestatum per numeros primos resultantia, Novi. Comm. Acad. Sci. Petropol. 18 (1772/74), 85–135; (cf. Opera Omnia vol. 3, pp. 240–281 )Google Scholar
  59. [EL]
    P. Eymard, J.P. Lafon, Le journal mathématique de Gauss, Revue d’histoire des sciences 9 (1956), 21–51CrossRefGoogle Scholar
  60. [FY]
    K. Feng, L. Ying, An elementary proof of quadratic reciprocity law in F q [t], J. Sichuan Univ., Nat. Sci. Ed. 26, Spec. Issue (1989) 36–40Google Scholar
  61. [Fou]
    W. Fouche, A reciprocity law for polynomials with Bernoulli coefficients, Trans. Am. Math. Soc. 288 (1985), 59–67MathSciNetMATHGoogle Scholar
  62. [Fowl]
    D.H. Fowler, The mathematics of Plato’s Academy. A new reconstruction, Oxford Univ. Press 1987; revised reprint 1990Google Scholar
  63. [Fri]
    C. Friesen, Legendre symbols and continued fractions, Acta Arith. 59 (1991), 365–379Google Scholar
  64. [FG]
    J. Froemke, J.M. Grossman, An algebraic approach to some number-theoretic problems arising from paper-folding regular polygons, Amer. Math. Monthly 95 (1988), 289–307MathSciNetCrossRefMATHGoogle Scholar
  65. [Fu]
    W. Fuchs, Zur Lehre von den Kongruenzen bei C. F. Gauss III, Mitt., Gauss-Ges. Gött. 19 (1982), 63–78Google Scholar
  66. [Gal]
    C. F. Gauss, Algorithmus novus ad decidendum, utrum numerus integer positivus datas numeri primi positivi dati residuum quadraticum sit an non-residuum, Werke II, p. 59–68Google Scholar
  67. [Ga2]
    C. F. Gauss, Anzeige, Göttingische Gelehrte Anzeigen, 12. Mai 1808, Werke II, p. 151–154Google Scholar
  68. [GPZ]
    J. Gebel, A. Pethö, H.G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), 171–192MathSciNetMATHGoogle Scholar
  69. [GJ]
    R.E. Giudici, J. Jtem, On classes of quadratic residues and some applications, Sci., Ser. A 3 (1989), 23–32Google Scholar
  70. [Gol]
    C. Goldstein, On a seventeenth-century version of the “fundamental theorem of arithmetic”, Historia Math. 19 (1992), 177–187Google Scholar
  71. [Go2]
    C. Goldstein, Un théorème de Fermat et ses lecteurs, Saint-Denis: Presses Universitaires de Vincennes, 1995MATHGoogle Scholar
  72. [Gö]
    Götting, Uber die Verteilung der Reste und Nichtreste einer Primzahl von der Form 4n + 3 innerhalb des Intervalles 1 bis (p — 1)/2, J. Reine Angew. Math. 70 (1869), 363–364;Google Scholar
  73. [Gra]
    J. J. Gray, A commentary on Gauss’s mathematical diary, 1796–1814, with an English translation, Expositiones Math. 2 (1984), 97–130; Erratum: ibid. 3 (1985), 192Google Scholar
  74. [vGr]
    L. v. Grosschmid, Zur Theorie der quadratischen Reste,J. Reine Angew. Math. 145 (1915), 254–257; FdM 45 (1914/15), 324Google Scholar
  75. [Gro]
    E. Grosswald, Representations of integers as sums of squares, Springer-Verlag 1985Google Scholar
  76. [Gry]
    A. Grytczuk, On some connections between Legendre symbols and continued fractions, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 24 (1997), 19–21Google Scholar
  77. [Gro]
    Gull M. Guinot, Les resveries de Fermat, Aléas, Lyon 1993Google Scholar
  78. [Gu2]
    M. Guinot, “Le diable d’homme” d’Euler, Aléas, Lyon 1994Google Scholar
  79. [Gu3]
    M. Guinot, Une époque de transition: Lagrange et Legendre, Aléas, Lyon 1996Google Scholar
  80. [Gup]
    H. Gupta, Chains of quadratic residues,Math. Comp. 25 (1971), 379382Google Scholar
  81. [Heal]
    Heal T.L. Heath, Diophantus of Alexandria. A study in the history of Greek algebra, Cambridge Univ. Press 1885; Dover Publications, 1964Google Scholar
  82. [Hel]
    Y. Hellegouarch, Loi de réciprocité, critère de primalité dans F g [t], C. R. Math. Acad. Sci., Soc. R. Can. 8 (1986), 291–296Google Scholar
  83. [Hil]
    Hil D. Hilbert, Natur und mathematisches Erkennen, Lecture Notes, Autumn 1919, Göttingen 1989Google Scholar
  84. [Hof]
    J. Hofmann, Uber die zahlentheoretischen Methoden Fermats und Eulers, ihre Zusammenhänge und ihre Bedeutung,Archive for History of Exact Sciences 1 (1960/62), 122–159Google Scholar
  85. [Hol]
    L. Holzer, Minimal solutions of diophantine equations, Can. J. Math. 11 (1950), 1–3Google Scholar
  86. [Hop]
    H. Hopf, Uber die Verteilung quadratischer Reste, Math. Z. 32 (1930), 222–231Google Scholar
  87. [Joh]
    K.R. Johnson, Reciprocity in Ramanujan’s sum, Math. Mag. 59 (1986), 216–222Google Scholar
  88. [Jos]
    K. Joshi, Notes on Diophantus, Current Science 67, No. 12, December 25, 1994, pp. 957–966Google Scholar
  89. [Kn]
    W. Knorr, Problems in the interpretation of Greek number theory: Euclid and the “fundamental theorem of arithmetic”, Studies in Hist. and Philos. Sci. 7 (1976), 353–368Google Scholar
  90. [Kol]
    K. Koutsky, Eine Bemerkung zum quadratischen Charakter der Zahlen, (Czech.), Casopis 58 (1929), 42–52; FdM 55-II (1929), 691Google Scholar
  91. [Ko2]
    K. Koutsky, Uber den quadratischen Charakter der Zahlen und über die Verallgemeinerung eines Satzes von Lagrange über die Verteilung der quadratischen Reste,(Czech.) Rozpravy 39 (1930), 21 pp; FdM 56-I (1930), 158Google Scholar
  92. [Ko3]
    K. Koutsky, Ober die Verteilung der Potenzreste für einen Primzahlmodul, Casopis 59 (1930), 65–82 (Czech.); FdM 56-I (1930), 158Google Scholar
  93. [Ko4]
    K. Koutsky, Uber die Verteilung der Potenzreste für einen Primzahlmodul. II, C. R. Congr. Math. Pays Slaves, 119–128; FdM 56-I (1930), 158Google Scholar
  94. [Kue]
    H. Kühne, Eine Wechselbeziehung zwischen Funktionen mehrerer Unbestimmter, die zu Reziprozitätsgesetzen führt, J. Reine Angew. Math. 124 (1902), 121–133; FdM 32 (1901), 210Google Scholar
  95. [Ku]
    E. Kummer, Letters to Kronecker, Collected Papers vol I, Springer 1975Google Scholar
  96. [Lal]
    J. L. Lagrange, Problèmes indéterminés du second degré, Mém. de l’Acad. Royale Berlin 23 (1769); OEuvres II, 377–535Google Scholar
  97. [La2]
    J. L. Lagrange, Démonstration d’un théorème d’arithmétique, OEuvres de Lagrange 3 (1896), 189–201Google Scholar
  98. [La]
    J.H. Lambert, Aductata quaedam de numeris eorumque anatomia, Nova Acta Erudit., Leipzig 1769, 127–128Google Scholar
  99. [Lar]
    L.C. Larson, A theorem about primes proved on a chessboard, Math. Mag. 50 (1977), no. 2, 69–74Google Scholar
  100. [Leb]
    V. A. Lebesgue, Extension d’une formule de Gauss, C. R. Acad. Sci. Paris 59 (1864), 1067–1068Google Scholar
  101. [LeD]
    D.H. Lehmer, Computer technology applied to the theory of numbers, Studies Number Theory (LeVeque, ed.), 117–151 (1969)Google Scholar
  102. [LLM]
    D.H. Lehmer, E. Lehmer, W.H. Mills, Pairs of consecutive power residues, Can. J. Math. 15 (1963), 172–177MathSciNetMATHGoogle Scholar
  103. [LeE]
    E. Lehmer, Patterns of power residues, J. Number Theory 17 (1983), 37–46Google Scholar
  104. [Len]
    H.W. Lenstra, Computing Jacobi symbols in algebraic number fields, Nieuw Arch. Wiskd. 13 (1995), 421–426Google Scholar
  105. [Lin]
    R. Linden, Uber die Verteilung quadratischer Reste, Hausarbeit Göttingen, 1976Google Scholar
  106. [Loe]
    A. Loewy, Uber die Reduktion algebraischer Gleichungen durch Adjunktion insbesondere reeller Radikale,Math. Z. 15 (1922)Google Scholar
  107. [Ma]
    D. Mahnke, Leibniz auf der Suche nach einer allgemeinen Primzahlgleichung,Bibl. Math. (3) 13 (1912/13), 26–61Google Scholar
  108. [Mah]
    M.S. Mahoney, The mathematical career of Pierre de Fermat, 16011665, 2nd ed. Princeton UP 1994Google Scholar
  109. [Man]
    Y.I. Manin, Good proofs are proofs that make us wiser, DMV-Mitteilungen 2 (1998), 40–44Google Scholar
  110. [Mnt]
    W. Mantel, Résidus quadratiques de polynômes, Nieuw Arch. Wisk. (2) 6 (1905), 374–386; FdM 36 (1905), 270Google Scholar
  111. [McC]
    E. McClintock, On the nature and use of the functions employed on the recognition of quadratic residues, Trans. Amer. Math. Soc. 3 (1908), 92–109; FdM 33 (1902), 204;Google Scholar
  112. [MW]
    K.D. Merrill, L.H. Walling, On quadratic reciprocity over function fields, Pacific J. Math. 173 (1996), 147–150MathSciNetMATHGoogle Scholar
  113. [MS]
    S.M. Meyer, J.P. Sorenson, Efficient algorithms for computing Jacobi symbols, ANTS II, Proc. Bordeaux 1996, 229–243Google Scholar
  114. [Mil]
    W.H. Mills, Bounded consecutive residues and related problems, Proc. Sympos. Pure Math. 8 (1965), 170–174Google Scholar
  115. [Min]
    F. Minding, Anfangsgründe der höheren Arithmetik, Berlin 1832Google Scholar
  116. [Mnk]
    H. Minkowski, Letter to Hilbert, August 3, 1893; in: Briefe an David Hilbert, mit Beiträgen und herausgegeben von L. Rüdenberg und H. Zassenhaus, Springer, 1973Google Scholar
  117. [MSC]
    D.S. Mitrinovic, J. Sandor, B. Crstici, Handbook of number theory, Kluwer 1995Google Scholar
  118. [Mol]
    R. Mollin, A survey of Jacobi symbols, ideals, and continued fractions, Far East J. Math. Sci. 6 (1998), 355–368Google Scholar
  119. [Mon]
    M.G. Monzingo, On the distribution of quadratic residues, The Fibonacci sequence, Collect. Manuscr. (1980), 94–97Google Scholar
  120. [Mol]
    L. J. Mordell, The condition for integer solutions of ax 2 + by 2 + cz 2 + dt 2 = 0, J. Reine Angew. Math. 164 (1931), 40–49Google Scholar
  121. [Mo2]
    L. J. Mordell, On the magnitude of the integer solutions of the equation ax2 + by2 + cz2 = 0, J. Number Theory 1 (1968), 1–3Google Scholar
  122. [Mor]
    Moreau, Extrait d’une lettre de M. Moreau,Nouv. Annal. (2) 12 (1873), 323–324Google Scholar
  123. [Nau]
    P. Naur, Proof versus formalization, BIT 34 (1994), 148–164Google Scholar
  124. [Neu]
    O. Neumann, Ober die Anstöße zu Kummers Schöpfung der “Idealen Complexen Zahlen”, Math. Persp. K.-R. Biermann 60th Birthday, 179–199 (1981)Google Scholar
  125. [Ore]
    O. Ore, Contributions to the theory of finite fields, Trans. Amer. Math. Soc. 36 (1934), 243–274Google Scholar
  126. [Pe]
    T. Pépin, Sur certains nombres complexes compris dans la formule a + bue, J. Math. Pures Appl. (3) I (1875), 317–372Google Scholar
  127. [PJ]
    B. M. Phong, J. P. Jones, Quadratic residues and related problems, Ann. Univ. Sci. Budapest Sect. Comput. 13 (1992) 149–155Google Scholar
  128. [Pill]
    Pill A. Piltz, Ober die Häufigkeit der Primzahlen in arithmetischen Progressionen und liber verwandte Gesetze, Habilitationsschrift Jena 1884Google Scholar
  129. [Pol]
    H.C. Pocklington, The direct solution of the quadratic and cubic binomial congruences with prime moduli, Proc. Cambridge Phil. Soc. 19 (1917), 57–59Google Scholar
  130. [Po2]
    H.C. Pocklington, Quadratic and higher reciprocity of modular polynomials, Proc. Cambridge Phil. Soc. 40 (1944), 212–214Google Scholar
  131. [vPW]
    A.J. van der Poorten, P.G. Walsh, A Note on Jacobi Symbols and Continued Fractions, Amer. Math. Monthly 106 (1999), 52–56MathSciNetCrossRefMATHGoogle Scholar
  132. [Pop]
    C.P. Popovici, A relation between the integer part and the Euler indicatrix (Romanian), An. Univ. Bucuresti Ser. Sti. Natur. Mat.-Mec. 16 (1967), 49–52Google Scholar
  133. [Ras]
    R. Rashed, Les travaux perdus de Diophante. II, Revue Histoire Sci. 28 (1975), 3–30Google Scholar
  134. [Red]
    L. Rédei, Über die Anzahl der Potenzreste mod p im Intervall 1, j, Nieuw Arch. Wiskunde (2) 23 (1950), 150–162Google Scholar
  135. [Rei]
    K. Reich, Zur Theorie der quadratischen Reste, Archiv Math. Phys. (II) 11 (1892), 176–192; FdM 24 (1892), 176–177Google Scholar
  136. [Rie]
    G.J. Rieger, Die Zahlentheorie bei C.F. Gauß, Gauß Gedenkband (ed.: H. Reichardt ), Teubner 1957Google Scholar
  137. [Roc]
    E. Rocci, Sulla distribuzione dei residui quadratici di un numero primo nella serie naturale, Giornale di Mat. 65 (1927), 112–134; FdM 53 (1927), 124–125Google Scholar
  138. [Ros]
    J. Rosenberg, Algebraic K-theory and its application, GTM 14’T, Springer 1996Google Scholar
  139. [Rus]
    D. Rusin, Solution of Legendre’s equation,in preparationGoogle Scholar
  140. [Rya]
    W. J. Ryan, Proof of the quadratic reciprocity law in primitive recursive arithmetic, Math. Scand. 45 (1979), 177–197Google Scholar
  141. [Schi]
    W. Scharlau, Richard Dedekinds algebraische Arbeiten aus seiner Göttinger Privatdozenten-Zeit 1854–1858, Abh. Braunschw. Wiss. Ges. 33 (1982), 69–70Google Scholar
  142. [Sch2]
    W. Scharlau, Unveröffentlichte algebraische Arbeiten Richard Dedekinds aus seiner Göttinger Zeit 1855–1858, Arch. Hist. Exact Sci. 27 (1982), 335–367Google Scholar
  143. [SO]
    W. Scharlau, H. Opolka, Von Fermat bis Minkowski. Eine Vorlesung fiber Zahlentheorie und ihre Entwicklung, Springer 1980; Engl. translation: From Fermat to Minkowski. Lectures on the theory of numbers and its historical development, Springer 1985Google Scholar
  144. [Sce]
    H. Scheffler, Beleuchtung und Beweis eines Satzes aus Legendre’s Zahlentheorie,Leipzig 1893?Google Scholar
  145. [Scz]
    A. Schinzel, On two conjectures of P. Chowla and S. Chowla concerning continued fractions, Ann. Mat. pura appl. 98 (1974), 111–117Google Scholar
  146. [Scm]
    F.K. Schmidt, Allgemeine Körper im Gebiet der höheren Kongruenzen, Diss. Freiburg 1925Google Scholar
  147. [Sch]
    I. Schönheim, Formules pour résoudre la congruence x 2 - a (mod P) dans des cas encore inconnus et leur application pour déterminer directement des racines primitives de certains nombres premiers (Romanian. Russian and French summary), Acad. Republ. Popul. Romine, Fil. Cluj, Studii Cerc. Mat. Fiz. 7 (1956), 51–58Google Scholar
  148. [Scf]
    R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comput. 44 (1985), 483–494Google Scholar
  149. [Scw]
    S. Schwarz, A contribution to the arithmetic of finite fields (Slovak.) Prirodoved. Priloha Techn. Obzoru Sloven. 1 no. 8 (1940), 75–81Google Scholar
  150. [Ses]
    J. Sesiano, Books IV to VII of Diophantus’ Arithmetica in the Arabic translation attributed to Qusta ibn Luqa, Springer-Verlag 1982Google Scholar
  151. [Shl]
    J. Shallit, On the worst case of three algorithms for computing the Jacobi symbol, J. Symb. Comp. 10 (1990), 593–610Google Scholar
  152. [SS]
    J. Shallit, J. Sorenson, A binary algorithm for the Jacobi symbol, SIGSAM Bull. 27 (1993), 4–11CrossRefGoogle Scholar
  153. [Sha]
    D. Shanks, Five number-theoretic algorithms, Proc. 2nd Manit. Conf. numer. Math., Winnipeg 1972, 51–70 (1973)Google Scholar
  154. [Shp]
    H. Shapiro, Introduction to the theory of numbers, Wiley and Sons 1983 [Sie] C.L. Siegel, Analytische Zahlentheorie I, Lecture Notes, Göttingen 1963Google Scholar
  155. [Sin]
    S. Singh, Bound for the solutions of a Diophantine equation in prime Galois fields, Indian J. Pure Appl. Math. 8 (1977), 1428–1430Google Scholar
  156. [Sko]
    Th. Skolem, A simple proof of the condition of solvability of the diophantine equation ax e + by 2 + cz 2 = 0, Norske Vid. Selsk. Forhdl. 24 (1952), 102–107Google Scholar
  157. [Smi]
    S.T. Smith, Quadratic residues and x 3 +y3 = z3 in models of IE l and IE 2, Notre Dame J. Formal Logic 34 (1993), 420–438Google Scholar
  158. [Spe]
    G. Speckmann, Ober die Auflösung der Congruenz x 2 - a (mod p), Arch. Math. Phys. 14 (1895), 445–448; ibid. 15 (1896), 335–336Google Scholar
  159. [Sta]
    B. Stankowitsch, Zur Theorie der Congruenzen mit einer Veränderlichen in Bezug auf einen Primzahlmodulus, Mosk. Math. Samml. X (1882); FdM 14 (1882), 124–125Google Scholar
  160. [Ste]
    S.A. Stepanov, Arithmetic of Algebraic Curves, Monographs in Contemporary Mathematics, 1994Google Scholar
  161. [Stl]
    R. V. Sterneck, Ueber die Verteilung quadratischer Reste und Nichtreste einer Primzahl, Moscow Math. Samml. 20 (1898), 269–284; FdM 29 (1898), 153–154; RSPM 7 (1898), 142Google Scholar
  162. [St2]
    R. V. Sterneck, Sitzungsber. Akad. Wiss. Wien 2A 114 (1905), 711717Google Scholar
  163. [Sti]
    J. Stillwell, Numbers and Geometry, Undergraduate Texts in Mathematics, Springer Verlag 1997MATHGoogle Scholar
  164. [TF]
    Y. Tamarkin, A. Friedmann, Sur les congruences du second degré et les nombres de Bernoulli,Math. Ann. 62 (1906), 409–412 42 1. The Genesis of Quadratic ReciprocityGoogle Scholar
  165. [Ton]
    A. Tonelli, Bemerkung fiber die Auflösung quadratischer Congruenzen, Gött. Nachr. 1891, 344–346Google Scholar
  166. [Tor]
    G. Torelli, Sulla distribuzione dei resti quadratici di un numero primo, Rend. Accad. Napoli 15 (1909), 223–230; RSPM 19 (1911), 91Google Scholar
  167. [Vai]
    R. Vaidyanathaswamy, The quadratic reciprocity of polynomials modulo p, J. Indian Math. Soc. 17 (1928), 185–196Google Scholar
  168. [Val]
    H.S. Vandiver, An aspect of the linear congruence with applications to the theory of Fermat’s quotient, Bull. Amer. Math. Soc. 22 (1915), 61–67;MathSciNetCrossRefMATHGoogle Scholar
  169. [Va2]
    H.S. Vandiver, On the distribution of quadratic and higher residues, Bull. Amer. Math. Soc. 31, 346–350; FdM 51 (1925), 129Google Scholar
  170. [Va3]
    H.S. Vandiver, Algorithms for the solution of the quadratic congruence, Amer. Math. Monthly 36 (1929), 83–86; FdM 55 I (1929), 95Google Scholar
  171. [Vui]
    J. Vuillemin, La Philosophie de l’algèbre, Presses Univ. France, 1962Google Scholar
  172. [Wag]
    S. Wagon, The Euclidean algorithm strikes again, Am. Math. Mon. 97 (1990), 125–129Google Scholar
  173. [Web]
    H. Weber, Lehrbuch der Algebra 3,Braunschweig, F. Vieweg und Sohn 1908; see also http://moa.cit.cornell.edu/MOA/MOA-JOURNALS2/WEBR.html Google Scholar
  174. [Wel]
    A. Weil, L’OEuvre arithmétique d’Euler, Gedenkband L. Euler, Birkhäuser 1983Google Scholar
  175. [We2]
    A. Weil, Number Theory, An approach through history. From Hammurapi to Legendre, Birkhäuser. XXI, 375 p. (1984)Google Scholar
  176. [Whm]
    A. L. Whiteman, On a theorem of higher reciprocity, Bull. Amer. Math. Soc. 43 (1937), 567–572Google Scholar
  177. [Wyl]
    C.T. Whyburn, The density of power residues and non-residues in subintervals of [1, ~],Acta Arith 14 (1967/1968), 113–116Google Scholar
  178. [Wy2]
    C.T. Whyburn, The distribution of rth powers in a finite field, J. Reine Angew. Math. 245 (1970), 183–187Google Scholar
  179. [Wil]
    K.S. Williams, On the size of a solution of Legendre’s equation, Utilitas Math. 34 (1988), 65–72Google Scholar
  180. [Xu]
    Z. Xu, Another proof of Fermat’s Last Theorem for cubes, J. Southwest Teach. Univ., Ser. B (1987), No.1, 20–22; Zbl 743. 11017Google Scholar
  181. [Zag]
    D. Zagier, A one-sentence proof that every prime p - 1 (mod 4) is a sum of two squares, Am. Math. Mon. 97 (1990), 144MathSciNetCrossRefMATHGoogle Scholar
  182. [Zig]
    I. Zignago, Intorno ad un teorema di aritmetica, Annali di Mat. (2) 21 (1893), 47–55Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Franz Lemmermeyer

There are no affiliations available

Personalised recommendations