Skip to main content

The hydrogen atom without external fields

  • Chapter

Abstract

Schrödinger’s equation3 in c.g.s. units for an electron in the field of a nucleus of charge Ze and of infinite mass is

$$\Delta u + \frac{{2m}}{{{\hbar ^2}}}(E + \frac{{Z{e^2}}}{r})u = 0$$
(1.1)

and in Hartree’s atomic units (see Introductory Remarks) is

$$\Delta u + 2(E + \frac{Z}{r})u = 0$$
(1.1’)

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-662-12869-5_6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. DuMoxn and E. R. COHEN: In this volume and private communication.

    Google Scholar 

  2. Numerical values, found in older theoretical references (including ref. [10] of our bibliography), which are based on the atomic constants, should be treated with great caution: The older values of some atomic constants were in error by much more than the statistical errors in the older experiments (due to systematic errors not expected at the time).

    Google Scholar 

  3. We shall use throughout the symbol d for the LAPLACE operator (axz -}- ayz -~- ôz2), instead of the symbol V2 which is more commonly used in English and American texts.

    Google Scholar 

  4. x, and y are measured in atomic units.

    Google Scholar 

  5. Cf. Theory of the ZEEMAN effect, Sect. 45.

    Google Scholar 

  6. Compare, for example, ref. 171, A. SOMMERFELD, Wellenmechanischer Ergänzungsband, p. 70 and the original work of E. SCHRÖDINGER, Abhandlungen zur Wellenmechanik, p. 1.

    Google Scholar 

  7. The alkali atoms which are more closely related to hydrogen than any other atoms do not show this degeneracy. To be sure, the discrete energy levels of the alkali atoms can be calculated to a good approximation by considering only the motion of the valence electron in the field arising from a charge distribution of closed shells, but this field is a non-Coulomb central field and levels of like n and different l have entirely different energies.

    Google Scholar 

  8. It should be noted that the atomic unit of action is h = h/22r and not h. The frequency of the spectral line may be obtained in c.g.s. units by dividing the energy difference (in c.g.s. units) between the initial and final states by h; or, if the energy difference is expressed in atomic units, by dividing by 27r.

    Google Scholar 

  9. E. R. COHEN: Phys. Rev. 88, 353 (1952).

    Google Scholar 

  10. We shall often use simply the symbol Ry for this quantity although, strictly speaking, we have defined Ry as a frequency, e Roe.

    Google Scholar 

  11. For a list of observed wave numbers of spectral lines in light atoms and ions see: Atomic Energy Levels, Vol. 1, U.S. National Bureau of Standards, Circular 467, 1949.

    Google Scholar 

  12. Cf. W. GORDON: Ann. d. Phys. 2, 1031 (1929).

    Google Scholar 

  13. The numerical factor (2 e)1 is included only for the sake of convenience in later calculations.

    Google Scholar 

  14. For properties of the confluent hypergeometric function see ref. [8], Chap. 16 or the article of J. MEIXNER, Vol. I of this Encyclopedia. We shall in general omit the word “confluent ”. We shall use the more general function F (a, ß, y, x) very rarely and will call it the “general hypergeometric function ”.

    Google Scholar 

  15. Cf. A. SOMMERFELD: Wellenmechanischer Ergänzungsband, p. 292, ref. [7]; see also our Sect. 36e.

    Google Scholar 

  16. Cf. JAHNKE-EMDE: Tables of Functions, especially p. 166 (differential equation), p. 98 (asymptotic formula), p. 90 (series expansion).

    Google Scholar 

  17. See Sect. 53.

    Google Scholar 

  18. The asymptotic formula for the BESSEL function can thus be looked upon as a special case of the WKB procedure.

    Google Scholar 

  19. See, for example, E. SCHRSDINGER, Ann. d. Phys. 80, 131 (1926).

    Google Scholar 

  20. Cf. Sec. 63 and particularly W. GORDON, Ann. d. Phys. 2, 1031 (1929).

    Google Scholar 

  21. See also M. STOBBE: Ann. d. Phys. 7, 661 (1930).

    Google Scholar 

  22. For details, see the work by MOTT and MASSEY, ref. [7] of the bibliography. For tables of COULOMB wave functions see N.B.S. Appl. Math. Circ. No. 17, Vol. 1, Washington, D.C. 1952.

    Google Scholar 

  23. UREY, BRICEWEDDE and MURPHY: Phys. Rev. 40, 1, 464 (1932).

    Google Scholar 

  24. For a detailed analysis see E. R. COHEN, Phys. Rev. 88, 353 (1952).

    Google Scholar 

  25. J. W. DuMoND and E. R. COHEN: Rev. Mod. Phys. 25, 691 (1953). — Cf. the preceding article in this volume.

    Google Scholar 

  26. Cf. J. FISCHER, Ann. d. Phys. 8, 821 (1931) paragraph 1; G. WENTZEL, Z. Physik 58, 348 (1929).

    Google Scholar 

  27. Cf. e. g., G. WENTZEL, Z. Physik 58. 348 (1929), Eq. (22). More precisely, u falls off as 0,2—z2)—g

    Google Scholar 

  28. W. GORDON: Z. Physik 48, 180 (1928), cf. also G. TEMPLE, Proc. Roy. Soc. Lond., Ser. A 121, 673 (1928); A. SOMMERFELD, Ann. d. Phys. 11, 257 (1931), paragraph 6. See also p. 47 of ref. [9]

    Google Scholar 

  29. See also ref. [9], p. 47.

    Google Scholar 

  30. To make the system uk complete, the eigenfunctions of the discrete spectrum must, of course, be included.

    Google Scholar 

  31. G. BREIT and H. A. BETHE: Phys. Rev. 93, 888 (1954).

    Google Scholar 

  32. W. GORDON: Z. Physik 48, 180 (1928).

    Google Scholar 

  33. For a potential falling off more rapidly than r-1 at large distances.

    Google Scholar 

  34. With 61 replaced by — a1, where a1 is defined in (4.10). With this substitution (7.2) and (6.30) are identical except for a change in sign [see normalization of Rw, Eq. (4.19)]. W. GORDON: Z. Physik 48, 180 (1928).

    Google Scholar 

  35. YENNIE, RAVENHALL and WILSON: Phys. Rev. 95, 500 (1954).

    Google Scholar 

  36. See Sect. 9 and 70, also ref. [9], pp. 116–119.

    Google Scholar 

  37. This method has, however, been used to obtain the momentum space wave functions for the discrete spectrum of hydrogen, E. A. HYLLERAAS, Z. Physik 74, 216 (1932).

    Google Scholar 

  38. H. WEYL: Z. Physik 46, 1 (1928). — V. Focx: Z. Physik 98, 145 (1935).

    Google Scholar 

  39. More generally, let f (r) and g(r) be two functions, which are complex conjugates of each other, f* (r) = g (r). If F(p) and G (p) are the FOURIER transforms of f and g, respectively, one finds that F* (p) =G(—p).

    Google Scholar 

  40. N. SVARTHOLM: Thesis, Lund 1%5. — R. MCWEENY and C. A. CouLSON: Proc. Phys. Soc. Lond. A 62, 509 (1949). — M. L:vY: Proc. R.y. Soc. Lond. 204, 145 (1950). — E. E. SALPETER: Phys. Rev. 84, 1226 (1951).

    Google Scholar 

  41. See, for instance, JAHNKE and ENDE, Funktionentafeln, 4th Ed., p. 109. Berlin: Springer 1945.

    Google Scholar 

  42. B. A. LIPPMANN and J. SCHWINGER: Phys. Rev. 79, 469 (1950). — M. L. GOLDBERGER: Phys. Rev. 82, 757; 84, 929 (1951). — E. E. SALPETER: Phys. Rev. 84, 1226 (1951).

    Google Scholar 

  43. Eq. (9.2) has been used recently, however, as the starting point of calculations in meson field theory. See, e.g., G. F. CHEW and F. E. Low, Phys. Rev. 101, 1570 (1956).

    Google Scholar 

  44. Actually, the bound states must be included to complete the set.

    Google Scholar 

  45. For a COULOMB potential, f+ still has a singularity at p =k.

    Google Scholar 

  46. Bethe and Salpeter, Quantum Mechanics. 4

    Google Scholar 

  47. See references at the beginning of Sect. 9.

    Google Scholar 

  48. A necessary, but not sufficient, condition for the validity of BORN approximation is tan Si F.s Si s 1.

    Google Scholar 

  49. See references [1], [2], [3] and [12] of the bibliography.

    Google Scholar 

  50. A detailed discussion of the properties of the DIRAC operators is given by R. H. GooD, Rev. Mod. Phys. 27, 187 (1955).

    Google Scholar 

  51. See ref. [3], [12], and [13] of the bibliography.

    Google Scholar 

  52. See ref. [1], Ch. VI; ref. [5], Ch. III and G. PARE and E. FEExnERG, Quantum Theory of Angular Momentum. Cambridge: Addison-Wesley Co. 1953.

    Google Scholar 

  53. Ref. [1], p. 144 or ref. [5], p. 46.

    Google Scholar 

  54. In older books and in ref. [9] the large components are labelled 3, 4 and the small components 1, 2. In these references the term in the HAMILTOxian which involves p differs from ours by a change in sign.

    Google Scholar 

  55. See ref. [2], Sect. 65.

    Google Scholar 

  56. It should also be remembered that (12.7) only holds for a wave function u, which satisfies the DIRAC equation. Consider, for instance, the expression (al (r) u)A where f (r) is an arbitrary function of position, not involving DIRAC operators. Although a commutes with f, p does not, and a valid approximation for (a f u)A is obtained from (12.7) only if we write f (r) to the left of p.

    Google Scholar 

  57. W. PAULI: Z. Physik 43, 601 (1927).

    Google Scholar 

  58. Regarding this factor of two, see L. H. THOMAS, Nature, Lond. 107, 514 (1926).

    Google Scholar 

  59. Unlike the HAMILTONian in the nonrelativistic SCHRÖDINGER theory, H not only involves the spin operator, but also depends explicitly on the eigenvalue. We shall only consider cases where WI «mc2 and shall not encounter any difficulty from the dependence of Hon W.

    Google Scholar 

  60. The expansion parameter in the PAULI approximation scheme, roughly speaking, is (Vic)2, not Vic.

    Google Scholar 

  61. Bethe and Salpeter, Quantum Mechanics.

    Google Scholar 

  62. The statement that j = l f z is merely a specific case of a more general theorem on the eigenvalues j (j +1) of the square of the sum of two commuting angular momentum operators, ka + kb: If the eigenvalues of kâ, kb are la (la I) and lb (lb + 1), then j = I la — lb I • I la — bbl +1,—, la + lb . j is defined as the positive root of j (j + 1) = const.

    Google Scholar 

  63. We can, of course, find a linear superposition of the two solutions, + and —, for fixed l and m, for which a or b vanishes. Such wave functions are eigenstates of ks and s, but not of the HAMILTOxian (13.2), since the eigenvalues X+ and X_ are different. If a is considered very small, the two eigenvalues of the total HAMILTOxian are approximately the same and such a wave function is “almost a stationary state”.

    Google Scholar 

  64. Ref. [1], p. 151.

    Google Scholar 

  65. Ref. [10], p. 310.

    Google Scholar 

  66. These expressions are taken from W. B. PAYNE, Ph. D. Thesis, Louisiana State University 1955 (unpublished). Payne has also tabulated the radial wave functions for the M and N shells. See also E. H. B.RHOP and H. S. MASSEY, Proc. Roy. Soc. Lond., Ser. A 153, 661 (1935). Graphs of the DIRAC wave functions are given by H. E. WHITE, Phys. Rev. 38, 513 (1931). Expressions for the DIRAC wave functions in terms of generalized LAGUERRE polynomials are given by L. DAVIS, Phys. Rev. 56, 186 (1939).

    Google Scholar 

  67. C. G. DARWIN: Proc. Roy. Soc. Lond., Ser. A 118, 654 (1928).

    Google Scholar 

  68. L. K. ACHESON: Phys. Rev. 82, 488 (1951). — L. R. ELTON: Proc. Phys. Soc. Lond. A 66, 806 (1953). — YENNIE, RAVENHALL and WILSON: Phys. Rev. 95, 500 (1954). See also ref. [9], p. 79.

    Google Scholar 

  69. In this section k is linear momentum, not angular momentum. Phys. Rev. 103, 1601 (1956).

    Google Scholar 

  70. YENNIE, RAVENHALL and WILSON: Phys. Rev. 95, 500 (1954). Bethe and Salpeter, Quantum Mechanics.

    Google Scholar 

  71. For a discussion of double scattering and expressions for the “assymetry factor” see ref. [9], p. 78 and 82.

    Google Scholar 

  72. J. H. BARTLETT and R. E. WATSON: Phys. Rev. 56, 612 (1939). — H. FESHBACH: Pbys. Rev. 84, 1206 (1951); 88, 295 (1953). — G. PARZEN and T. WAINWRIGHT: Phys. Rev. 96, 188 (1954). — J. DOGGETT and L. SPENCER: Phys. Rev. 103, 1597 (1956). — N. SHERMAN:

    Google Scholar 

  73. Such an expression was first derived by N. F. MOTT, Proc. Roy. Soc. Lond., Ser. A 124, 425 (1929) but his term in Za was incorrect. The expression quoted in ref. [9] is also wrong. The correct expression was obtained by W. A. MCKINLEY and H. FESHBACH, Phys. Rev. 74, 1759 (1948).

    Google Scholar 

  74. R. H. DALITZ: Proc. Roy. Soc. Lond., Ser. A 206, 509 (1951).

    Google Scholar 

  75. P. A. M. DIRAC: Proc. Roy. Soc. Lond., Ser. A 133, 80 (1931).

    Google Scholar 

  76. In fact, these corrections can be calculated in a consistent manner only according to hole theory.

    Google Scholar 

  77. A. Rusi Nowi Tz: Phys. Rev. 73, 1330 (1948).

    Google Scholar 

  78. M. LEvv: Proc. Roy. Soc. Lond., Ser. A 204, 145 (1950).

    Google Scholar 

  79. We shall simply write 6 for 6P.

    Google Scholar 

  80. H. A. BETHE: Z. Naturforsch. 3a, 470 (1948). — E. E. SALPETER: Phys. Rev. 87, 328 (1952).

    Google Scholar 

  81. Although the operator p • e+e • p is not zero itself, its expectation value with any real and bounded wave function u is — i f dr div (eu2) = 0. It then also follows that the expectation value of 2e • p equals that of e • p — p • e = i div ~.

    Google Scholar 

  82. In carrying out the FOURIER transforms it is useful to write e= - grad 9 _ — i (p — 9’ p) and = curl A = i (p X A +A x p). Note also that, for time-independent potentials satisfying the LORENTZ gauge condition, div A (r) = kA (k) = o.

    Google Scholar 

  83. For a historical survey see ref. PO], p. 317, and A. SOMMERFELD, Naturwiss. 28, 417 (1940) .

    Google Scholar 

  84. Except that there is no splitting for n 1 (j = z only). Nevertheless the energy shift W1 is larger for n = 1 than for any other level.

    Google Scholar 

  85. See ref. [10], p. 319 and W. E. LAMB, Rep. Progr. Physics 14, 19 (1951).

    Google Scholar 

  86. For details on this voluminous subject see ref. [5] or A. SOMMERFELD, Atombau and Spektrallinien, 5th Ed.; or ref. [4], Ch. 6; or Vol. XXXVI of this Encyclopedia.

    Google Scholar 

  87. D. R. HARTREE: Proc. Cambridge Phil. Soc. 24, 111 (1928).

    Google Scholar 

  88. BETHE and SALPETER: Quantum Mechanics of One-and Two-Electron Systems. Sect. 17.

    Google Scholar 

  89. E. FERMI: Z. Physik 48, 73 (1928). — L. H. THOMAS: Proc. Cambridge Phil. Soc. 23, 542 (1927). See also P. GoMSAs, Statistische Theorie des Atoms, Vienna: Springer 1949. and Vol. XXXVI of this Encyclopedia.

    Google Scholar 

  90. L. PAULING: Proc. Roy. Soc. Lond., Ser. A 114 (1927). — J. C. SLATER: Phys. Rev. 36, 57 (1930).

    Google Scholar 

  91. LANDOLT and BÖRNSTEIN: Zahlenwerte und Funktionen, 6. Ed., Vol. I/1 Berlin: Springer 1950.

    Google Scholar 

  92. R. CHRISTY and J. KELLER: Phys. Rev. 61, 147 (1942).

    Google Scholar 

  93. Small remaining discrepancies, due to the finite nuclear size, are discussed by A. SCHAWLOW and C. TOWNES, Science, Lancaster, Pa. 115, 284 (1952) and Phys. Rev. 100, 1273 (1955).

    Google Scholar 

  94. S. BRENNER and G. E. BROWN: Proc. Roy. Soc. Lond., Ser. A 218, 422 (1953).

    Google Scholar 

  95. For a more detailed comparison of theory with the latest experimental data see D. SAXON Ph. D. Thesis, Univ. of Wisconsin and J. E. MACK, Phys. Rev. 87, 225 (1952).

    Google Scholar 

  96. S. COHEN: Ph. D. Thesis, Cornell 1955.

    Google Scholar 

  97. Recent experimental work by D. SAXON indicates a slightly smaller value for the K — LI difference, which would increase the discrepancy by a few Ry.

    Google Scholar 

  98. For treatments of quantum electrodynamics see, for instance, refs. [3], [6] and [11] to [14] of the bibliography.

    Google Scholar 

  99. R. P. FEYNMAN: Phys. Rev. 76, 749, 769 (1949).

    Google Scholar 

  100. H. A. BETHE: Phys. Rev. 72, 339 (1947). See also our Sect. 19ß.

    Google Scholar 

  101. For a list of the classic papers of these authors on quantum electrodynamics see refs. [6], [12], [13] and [14].

    Google Scholar 

  102. N. KROLL and W. LAMB: Phys. Rev. 75, 388 (1949). — J. FRENCH and V. WEissxoPF: Phys. Rev. 75, 1240 (1949). — J. SCHWINGER: Phys. Rev. 76, 790 (1949). — R. P. FEYNMAN: Phys. Rev. 76, 769 (1949).

    Google Scholar 

  103. The expression (18.1) holds only for a nonrelativistic change in momentum, q2,’ (In c)2, but expressions have been evaluated which hold for all values of qv.

    Google Scholar 

  104. R. KARPLUS and N. KROLL: Phys. Rev. 77, 536 (1950).

    Google Scholar 

  105. F. BLOCH and A. NORDSIECK: Phys. Rev. 52, 54 (1937). — W. PAULI and M. FIERZ: Nuovo Cim. 15, 167 (1938).

    Google Scholar 

  106. J. JAUCH and F. ROHRLICH: Phys. Rev. 98, 181 (1955) and Heiv. phys. Acta 27, 613 (1954). — E. L. LoMON: Nuclear Physics 1, 101 (1956).

    Google Scholar 

  107. In (18.4), for instance, the term in g2 is proportional to the charge distribution producing the field, which is a point charge Ze â() (r) for a COULOMB potential.

    Google Scholar 

  108. R. KARPLUS, A. KLEIN and J. SCHWINGER: Phys. Rev. 86, 288 (1952). — M. BARANGER, H. BETHE and R. FEYNMAN: Phys. Rev. 92, 482 (1953).

    Google Scholar 

  109. E. WICHMAN and N. M. KROLL: Phys. Rev. 101, 843 (1956).

    Google Scholar 

  110. H. A. BETHE: Phys. Rev. 72, 339 (1947).

    Google Scholar 

  111. This follows from (19.7) as a special case. For a free electron, the momentum changes by k upon emission or absorption of a quantum. If retardation is neglected, this means that k is negligible compared with p, and therefore the energy En after emission of the quantum, is the same as that before, E0. Then the second term in (19.7) vanishes, q.e.d.

    Google Scholar 

  112. In the covariant evaluation of JET, great care must be taken that the definition of d is equivalent to that in the nonrelativistic calculation of LE.; see footnote 13 of R. P. FEYNMAN, Phys. Rev. 76, 769 (1949).

    Google Scholar 

  113. E. E. SALPETER: Phys. Rev. 89, 92 (1953).

    Google Scholar 

  114. For P-states a term in (19.16), connected with the electron’s anomalous magnetic moment, is multiplied by (1 — 2m/M); see W. BARKER and F. GLOVER, Phys. Rev. 99, 317 (1955).

    Google Scholar 

  115. E. E. SALPETER: Phys. Rev. 87, 328 (1952). A small term in this paper, called d Ecc should be doubled.

    Google Scholar 

  116. No nuclei are known which have a finite electric dipole moment, see ref. [16], Chap. 2. 2 E. E. SALPETER: Phys. Rev. 89, 92 (1953).

    Google Scholar 

  117. A. SCHAWLOW and C. TOWNES: Science, Lancaster, Pa. 115, 284 (1952) and Phys. Rev. 100, 1273 (1955).

    Google Scholar 

  118. L. L. FOLDY: Phys. Rev. 83, 688 (1951).

    Google Scholar 

  119. BETRE, BROWN and STERN: Phys. Rev. 77, 370 (1950)

    Google Scholar 

  120. W. E. LAMB: Phys. Rev. 85, 259 (1952).

    Google Scholar 

  121. E. DAYHOFF, S. TRIEBWASSER and W. LAMB: Phys. Rev. 89, 106 (1953).

    Google Scholar 

  122. J. DUMOND and E. COHEN: This volume. - J. BEARDEN and J. THOMSEN: Atomic Constants. Baltimore: Johns Hopkins University 1955.

    Google Scholar 

  123. E. E. SALPETER: Phys. Rev. 89, 92 (1953). In this paper the notation used in this section is explained more fully.

    Google Scholar 

  124. J. M. HARRIMAN: Phys. Rev. 101, 594 (1956).

    Google Scholar 

  125. M. BARANGER, H. BETHE and R. FEYNMAN: Phys. Rev. 92, 482 (1953). - KARPLUS, KLEIN and SCHWINGER: Phys. Rev. 86, 288 (1952).

    Google Scholar 

  126. R. KARPLUS and N. KROLL: Phys. Rev. 77, 536 (1950). - M. BARANGER, F. DYSON and E. SALPETER: Phys. Rev. 88, 680 (1952). - BERSOHN, WENESER and KROLL: Phys. Rev. 91, 1257 (1953).

    Google Scholar 

  127. S. TRIEBWASSER, E. DAYHOFF and W. LAMB: Phys. Rev. 89, 98 (1953).

    Google Scholar 

  128. R. NOVICE, E. LIPWORTH and P. YERGIN: Phys. Rev. 100, 1153 (1955).

    Google Scholar 

  129. See ref. [16), Chap. 4.

    Google Scholar 

  130. Classically speaking, s and k precess rapidly about the direction of M. In turn, M precesses about the direction of f, but much more slowly, and only the components of s and k parallel to M are important.

    Google Scholar 

  131. S. ToLANSxl: Fine Structure In Line Spectra. London: Methuen and Co. 1935.

    Google Scholar 

  132. G. BREIT: Phys. Rev. 35, 1447 (1930).

    Google Scholar 

  133. In fact, the anomalous magnetic moment of the electron was first inferred from a discrepancy between (22.14) and experiment. G. BREIT: Phys. Rev. 72, 984 (1947).

    Google Scholar 

  134. R. KARPLUS and A. KLEIN: Phys. Rev. 85, 972 (1952). — N. M. KROLL and F. POLL0cK: Phys. Rev. 86, 876 (1952).

    Google Scholar 

  135. G. BREIT and R. MEYEROTT: Phys. Rev. 72, 1023 (1947).

    Google Scholar 

  136. R. ARNOWITT: Phys. Rev. 92, 1002 (1953). — W. NEWCOMB and E. SALPETER: Phys. Rev. 97, 1146 (1955).

    Google Scholar 

  137. A. PRODELL and P. KuscH: Phys. Rev. 88, 184 (1952) and 100, 1183 (1955). — J. WITKE and R. DICKE: Phys. Rev. 96, 530 (1954).

    Google Scholar 

  138. S. KOENIG, A. PRODELL and P. KuscH: Phys. Rev. 88, 191 (1952). — R. BERINGER and M. HEALD: Phys. Rev. 95, 1474 (1954).

    Google Scholar 

  139. The internal structure of the proton also contributes (unknown) corrections to the fine structure separation energy of the same absolute order of magnitude as to hyperfine structure. But, since the fine structure itself is very much larger than hyperfine structure, these corrections have a negligible effect on (21.6), but an appreciable one on (22.20). On the other hand, the purely experimental errors are larger in the experiments leading to (21.6) than in those leading to (22.20).

    Google Scholar 

  140. A. BOHR: Phys. Rev. 73, 1109 (1948). — F. E. Low: Phys. Rev. 77, 361 (1950). — F. Low and E. SALPETER: Phys. Rev. 83, 478 (1951).

    Google Scholar 

  141. C. GREIFINGER: Ph. D. Thesis, Cornell 1954.

    Google Scholar 

  142. For a more detailed account and a bibliography see a review article by S. DEBENEDETTI and H. C. CORBEN, Ann. Rev. Nuc. Sci. 4, 191 (1954). Cf. also L. SIMONS in Vol. XXXIV of this Encyclopedia.

    Google Scholar 

  143. A. ORE and J. POWELL: Phys. Rev. 75, 1696, 1963 (1953).

    Google Scholar 

  144. All terms of order as Ry were first calculated by J. PIRENNE, Arch. Sci. phys. nat. 29, 121, 207, 265 (1947); V. BERESTETSKI and L. LANDAU, J. exp. theor. Phys. USSR. 19, 673, 1130 (1949). Some errors in these papers were corrected by R. A. FERRELL, Phys. Rev. 84, 858 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1957 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bethe, H.A., Salpeter, E.E. (1957). The hydrogen atom without external fields. In: Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12869-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12869-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12871-8

  • Online ISBN: 978-3-662-12869-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics