Branching Processes and Their Applications in the Analysis of Tree Structures and Tree Algorithms

  • Luc Devroye
Part of the Algorithms and Combinatorics book series (AC, volume 16)


We give a partial overview of some results from the rich theory of branching processes and illustrate their use in the probabilistic analysis of algorithms and data structures. The branching processes we discuss include the Galton-Watson process, the branching random walk, the Crump-Mode-Jagers process, and conditional branching processes. The applications include the analysis of the height of random binary search trees, random m-ary search trees, quadtrees, union-find trees, uniform random recursive trees and plane-oriented recursive trees. All these trees have heights that grow logarithmically in the size of the tree. A different behavior is observed for the combinatorial models of trees, where one considers the uniform distribution over all trees in a certain family of trees. In many cases, such trees are distributed like trees in a Galton-Watson process conditioned on the tree size. This fact allows us to review Cayley trees (random labeled free trees), random binary trees, random unary-binary trees, random oriented plane trees, and indeed many other species of uniform trees. We also review a combinatorial optimization problem first suggested by Karp and Pearl. The analysis there is particularly beautiful and shows the flexibility of even the simplest branching processes.


Random Walk Binary Tree Search Tree Random Tree Cayley Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz M. (1970): and I. A. Stegun, Handbook of Mathematical Tables, Dover Publications, New York, NYGoogle Scholar
  2. 2.
    Aho A. V. (1983): J. E. Hoperoft, and J. D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading, MA.Google Scholar
  3. 3.
    Aldous D. (1988): The random walk construction of uniform spanning trees and uniform labelled trees SIAM Journal of Discrete Mathematics, 0, 0–0.Google Scholar
  4. 4.
    Aldous D. (1991): The continuum random tree II: an overview, in: Proceedings Durham Symposium on Stochastic Analysis, ed. M. T. Barlow and N. H. Bingham, 23–70, Cambridge University Press, Cambrige, UK.CrossRefGoogle Scholar
  5. 5.
    Aldous D. (1991): The continuum random tree I, Annals of Probability, 19, 1–28.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Aldous D. (1983): The continuum random tree III, Annals of Probability, 21, 248–289.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aldous D. (1993): Probability distributions on cladograms, Technical Report, Institute of Mathematics and Applications, University of Minnesota.Google Scholar
  8. 8.
    Aldous D., Flannery B. and Palacios J.L. (1988): Two applications of urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of Markov chains, Probability in the Engineering and Information Sciences, 2, 293–307.zbMATHCrossRefGoogle Scholar
  9. 9.
    Alon N. (1992): J. H. Spencer, and P. Erdös, The Probabilistic Method, Wiley, New York.Google Scholar
  10. 10.
    Arkin E., Held M., Mitchell J. and Skiena S. (1994): Hamiltonian triangulations for fast rendering, in: Algorithms-ESA’94, ed. J. van Leeuwen, 855, 36–47, Lecture Notes in Computer Science, Springer-Verlag.Google Scholar
  11. 11.
    Asmussen S. and Hering H. (1983): Branching processes, Birkhäuser Verlag, Basel.Google Scholar
  12. 12.
    Athreya K.B. and Ney P.E. (1972): Branching Processes, Springer Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  13. 13.
    Avis D. and Gindy H.E. (1987): Triangulating point sets in space, Discrete Computational Geometry, 2, 99–111.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bahadur R.R. and Rao R.R. (1960): On deviation of the sample mean, Annals of Mathematical Statistics, 31, 1015–1027.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bell C.J. (1965): An investigation into the principles of the classification and analysis of data of an automatic digital computer, Doctoral Dissertation, Leeds University.Google Scholar
  16. 16.
    Bellman R and Harris T.E. (1952): On age-dependent binary branching processes, Annals of Mathematics, 55, 280–295.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bergeron F., Flajolet P., and Salvy B. (1992): Varieties of increasing trees, in: CAAP 92, ed. J.-C. Raoult, 581, 24–48, Lecture Notes in Computer Science, Springer-Verlag.CrossRefGoogle Scholar
  18. 18.
    Biggins J.D. (1976): The first and last-birth problems for a multitype age-dependent branching process, Advances in Applied Probability, 8, 446–459.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Biggins J.D. (1976): Asymptotic properties of the branching random walk, Ph.D. Thesis, University of Oxford.Google Scholar
  20. 20.
    Biggins J.D. (1977): Martingale convergence in the branching random walk, Journal of Applied Probability, 14, 25–37.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Biggins J.D. (1977): Chernoff’s theorem in the branching random walk, Journal of Applied Probability, 14, 630–636.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Biggins J.D. (1978): The asymptotic shape of the branching random walk, Advances in Applied Probability, 10, 62–84.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Biggins J.D. (1979): Growth rates in the branching random walk, Zeitschrift für Wahrscheinlichkeitstheorie and verwandte Gebiete, 48, 17–34.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Biggins J.D. (1990): The central limit theorem for the supercriticcal branching random walk, and related results, Stochastic Processes and theor Applications, 34, 255–274.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Biggins J.D. (1995): The growth and spread of the general branching random walk, Annals of Applied Probability, 5, 1008–1024.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Biggins J.D. (1996): How fast does a general branching random walk spread?, in: Classical and Modern Branching Processes, 84, 19–40, IMA Volumes in Mathematics and its Applications, Springer-Verlag, New York.Google Scholar
  27. 27.
    Biggins J.D. and Bingham N.H. (1993): Large deviations in the supercritical branching process, Advances in Applied Probability, 25, 757–772.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Biggins J.D. and Grey D.R. (1996): A note on the growth of random trees, Technical Report, School of Mathematics and Statistics, University of Sheffield, Sheffield, UK.Google Scholar
  29. 29.
    Bingham N (1988): On the limit of a supercritical branching process, Journal of Applied Probability, 25 A, 215–228.Google Scholar
  30. 30.
    Bramson M. (1983): Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. American Statistical Society, 285, 1–190.Google Scholar
  31. 31.
    Bramson M.D. (1978): Maximal displacement of branching Brownian motion, Communications on Pure and Applied Mathematics, 21, 531–581.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Bramson M.D. (1978): Minimal displacement of branching random walk, Zeitschrift für Wahrscheinlichkeitstheorie and verwandte Gebiete, 45, 89–108.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Bramson M., Durrett R. and Swindle G. (1989): Statistical mechanics of crabgrass, Annals of Probability, 17, 444–481.Google Scholar
  34. 34.
    Brown C.A. and Purdom P.W. (1981): An average time analysis of backtracking, SIAM Journal of Computing, 10, 583–593.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Bruijn N.G. de, Knuth D.E. and Rice S.O. (1972): The average height of planted plane trees, in: Graph Theory and Computing, ed. R.-C. Read, 15–22, Academic Press, New York.Google Scholar
  36. 36.
    Cayley A. (1858): On the analytical forms called trees, Philosophical Magazine, 28, 374–378.Google Scholar
  37. 37.
    Cayley A. (1889): A theorem on trees, Quarterly Journal of Pure and Applied Mathematics, 23, 376–378.Google Scholar
  38. 38.
    Chernoff H. (1952): A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Annals of Mathematical Statistics, 23, 493–507.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Coffman E.G. and Eve J. (1970): File structures using hashing functions, Communications of the ACM, 13, 427–436.zbMATHCrossRefGoogle Scholar
  40. 40.
    Crump K.S. and Mode C.J. (1968): A general age-dependent branching process, Journal of Mathematical Analysis and its Applications, 24, 494–508.zbMATHCrossRefGoogle Scholar
  41. 41.
    Darling D.A. (1970): The Galton-Watson process with infinite mean, Journal of Applied Probability, 7, 455–456.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Dekking F.M. and Host B. (1990): Limit distributions for minimal displacement of branching random walks, Probability Theory and Related Fields, 90, 403426.Google Scholar
  43. 43.
    Derrida B. and Spohn H. (1988): Polymers on disordered trees, spin glasses, and traveling waves, Journal of Statistical Physics, 51, 817–841.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Devroye L. (1986): A note on the height of binary search trees, Journal of the ACM, 33, 489–498.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Devroye L. (1986a): Non-Uniform Random Variate Generation, Springer-Verlag, New York.zbMATHGoogle Scholar
  46. 46.
    Devroye L. (1987): Branching processes in the analysis of the heights of trees, Acta Informatica, 24, 277–298.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Devroye L. (1988): Applications of the theory of records in the study of random trees, Acta Informatica, 26, 123–130.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Devroye L. (1990): On the height of random m-ary search trees, Random Structures and Algorithms, 1, 191–203.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Devroye L. (1993): On the expected height of fringe-balanced trees, Acta Informatica, 30, 459–466.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Devroye L. (1997): Universal limit laws for depths in random trees, SIAM Journal on Computing, to appear.Google Scholar
  51. 51.
    Devroye L. and Kamoun O. (1996): Random minimax game trees, in: Random Discrete Structures, ed. D. Aldous and R. Pemantle, 55–80, John Wiley, New York.CrossRefGoogle Scholar
  52. 52.
    Devroye L. and Laforest L. (1990): An analysis of random d-dimensional quadtrees, SIAM Journal on Computing, 19, 821–832.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Devroye L. and Reed B. (1995): On the variance of the height of random binary search trees, SIAM Journal on Computing, 24, 1157–1162.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Devroye L. and Zamora-Cura C. (1997): On the complexity of branch-andbound search for random trees, Technical Report, McGill University.Google Scholar
  55. 55.
    Dharmadhikari S.W. and Jogdeo K. (1969): Bounds on moments of certain random variables, Annals of Mathematical Statistics, 40, 1506–1508.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Drmota M. (1997): Analytic approach to the height of the binary search tree, Technical Report, University of Vienna.Google Scholar
  57. 57.
    Durrett R. (1979): Maxima of branching random walks versus independent random walks, Stochastic Processes and Their Applications, 9, 117–135.MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Durrett R. (1991): Probability: Theory and Examples, Wadsworth and Brooks, Pacific Grove, CA.Google Scholar
  59. 59.
    Dwass M. (1969): The total progeny in a branching process, Journal of Applied probability, 6, 682–686.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Erdös P. and Rényi A. (1960): On the evolution of random graphs, Magyar Tud. Akad. Mat. Kut. Int. Közl, 5, 17–61.zbMATHGoogle Scholar
  61. 61.
    Feller W. (1971): An Introduction to Probability Theory and its Applications, Volume 2, John Wiley, New York.zbMATHGoogle Scholar
  62. 62.
    Finkel R A. and Bentley J.L. (1974): Quad trees: a data structure for retrieval on composite keys, Acta Informatica, 4, 1–9.zbMATHCrossRefGoogle Scholar
  63. 63.
    Flajolet P., Gonnet G., Puech C. and Robson J.M. (1990): The analysis of multidimensional searching in quad-trees, in: Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, 100–109, ACM, New York, and SIAM, Philadelphia.Google Scholar
  64. 64.
    Flajolet P. and Lafforgue L. (1994): Search costs in quadtrees and singularity perturbation analysis, Discrete and Computational Geometry, 12, 151–175.MathSciNetCrossRefGoogle Scholar
  65. 65.
    Flajolet P. and Odlyzko A. (1982): The average height of binary trees and other simple trees, Journal of Computer and System Sciences, 25, 171–213.MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Flajolet P. and Odlyzko A. (1990): Singularity analysis of generating functions, SIAM Journal on Discrete Mathematics, 3, 216–240.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Flajolet P. and Sedgewick R. (1986): Digital search trees revisited, SIAM Journal on Computing, 15, 748–767.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Fredkin E.H. (1960): Trie memory, Communications of the ACM, 3, 490–500.CrossRefGoogle Scholar
  69. 69.
    Fuk D.K. and Nagaev S.V. (1961): Probability inequalities for sums of independent random variables, Theory of Probability and its Applications, 16, 643–660.CrossRefGoogle Scholar
  70. 70.
    Le Gall F.J. (1989): Marches aléatoires, mouvement Brownien et processus de branchement, in Séminaire de Probabilités XXIII, ed. J. Azéma, P. A. Meyer and M. Yor, 1372, 258–274, Lecture Notes in Mathematics, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  71. 71.
    Gonnet G.H. and Baeza-Yates R. (1991): Handbook of Algorithms and Data Structures, Addison-Wesley, Workingham, England.Google Scholar
  72. 72.
    Gradshteyn I.S. and Ryzhik I.M. (1980): Table of Integrals, Series and Products, Academic Press, New York.Google Scholar
  73. 73.
    Grimmett G.R. (1980): Random labelled trees and their branching networks, Journal of the Australian Mathematical Society series A, 30, 299–237.MathSciNetCrossRefGoogle Scholar
  74. 74.
    Grimmett G.R. and Stirzaker D.R. (1992):. Probability and Random Processes, Oxford University Press.Google Scholar
  75. 75.
    Gupta, V.K., Mesa O.J. and Waymire E. (1990): Tree-dependent extreme values: the exponential case, Journal of Applied Probability, 27, 124–133.MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Gutjahr W. (1992): The variance of level numbers in certain families of trees, Random Structures and Algorithms, 3, 361–374.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Gutjahr W. (1993): Expectation transfer between branching processes and random trees, Random Structures and Algorithms, 4, 447–467.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Gutjahr W. and Pflug G.C. (1992): The asymptotic contour process of a binary tree is a Brownian excursion, Stochastic Processes and theoir Applications, 41, 69–89.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Gutjahr W. and Pflug G.C. (1992): The limiting common distribution of two leaf heights in a random binary tree, Theoretical Informatics and Applications, 26, 1–18.MathSciNetzbMATHGoogle Scholar
  80. 80.
    Gutjahr W. and Pflug G.C. (1992): Average execution times of series-parallel networks, Technical Report, University of Vienna.Google Scholar
  81. 81.
    Gutjahr W. and Pflug G.C. (1992): The asymptotic distribution of leaf heights in binary trees, Graphs and Combinatorics, 8, 243–251.MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Hammersley J.M. (1974): Postulates for subadditive processes, Annals of Probability, 2, 652–680.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Harris T.E. (1963): The Theory of Branching Processes, Springer Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  84. 84.
    Hawkes J. (1981): Trees generated by a simple branching process, Journal of the London Mathematical Society, 24, 373–384.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Heathcote C.R., Seneta E. and Vere-Jones D. (1967): A refinement of two theorems in the theory of branching processes, Theory of Probability and its Applications, 12, 297–301.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Heyde C.C. (1970): A rate of convergence result for the super-critical Galton-Watson process, Journal of Applied Probability, 7, 451–454.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Heyde C.C. (1971): Some central limit analogues for super-critical Galton-Watson processes, Journal of Applied Probability, 8, 52–59.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Heyde C.C. (1971): Some almost sure converence theorems for branching processes, Zeitschrift für Wahrscheinlichkeitstheorie and verwandte Gebiete, 20, 189–192.MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Heyde C.C. and Brown B.M. (1971): An invariance principle and some convergence rate results for branching processes, Zeitschrift für Wahrscheinlichkeitstheorie and verwandte Gebiete, 20, 271–278.MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Jabbour J. (1998): Personal communication.Google Scholar
  91. 91.
    Jacquet P. and Régnier M. (1986): Trie partitioning process: limiting distributions, in: Lecture Notes in Computer Science, 214, 196–210.Google Scholar
  92. 92.
    Jagers P. (1975): Branching Processes with Biological Applications, John Wiley, New York.zbMATHGoogle Scholar
  93. 93.
    Jagers P. and Nerman O. (1984): The growth and composition of branching populations, Advances in Applied Probability, 16 221–259.Google Scholar
  94. 94.
    Janson S. (1983): Limit theorems for certain branching random walks on compact groups and homogeneous spaces, Annals of Probability, 11, 909–930.MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Joffe A. and Waugh W.A.O.N. (1982): Exact distributions of kin numbers in a Galton-Watson process, Journal of Applied Probability, 19, 767–775.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Karp R.M. (1990): The transitive closure of a random digraph, Random Structures and Algorithms, 1, 73–93.MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Karp R.M. and Pearl J. (1983): Searching for an optimal path in a tree with random costs, Artificial Intelligence, 21, 99–117.MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Karp R.M. and Zhang Y. (1995): Bounded branching process and AND/OR tree evaluation, Random Structures and Algorithms, 7, 97–116.MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Kemp R. (1984): Fundamentals of the Average Case Analysis of Particular Algorithms, B.G.Teubner, Stuttgart.zbMATHGoogle Scholar
  100. 100.
    Kendall D.G. (1966): Branching processes since 1873, Journal of the London Mathematical Society, 41, 385–406.MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Kennedy D.P. (1975): The Galton-Watson process conditioned on the total progeny, Journal of Applied Probability, 12, 800–806.MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Kesten H., Ney P. and Spitzer F. (1966): The Galton-Watson process with mean one and finite variance, Theory of Probability and its Applications, 11, 513–540.MathSciNetCrossRefGoogle Scholar
  103. 103.
    Kesten H. and Stigum B.P. (1966): A limit theorem for multidimensional Galton-Watson processes, Annals of Mathematical Statistics, 37 1211–1223.Google Scholar
  104. 104.
    Kingman J.F.C. (1973): Subadditive ergodic theory, Annals of Probability, 1, 883–909.MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Kingman J.F.C. (1975): The first-birth problem for an age-dependent branching process, Annals of Probability, 3, 790–801.MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Knuth D.E. (1973): The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading, Mass.Google Scholar
  107. 107.
    Kolchin V.F. (1978): Moment of degeneration of a branching process and height of a random tree, Mathematical Notes of the Academy of Sciences of the USSR, 6, 954–961.Google Scholar
  108. 108.
    Kolmogorov A.N. (1938): Zur Lösung einer biologischen Aufgabe, 2, 1–6, Issledovatelskogo instituta matematiki i mechaniki pri Tomskom Gosudarstvennom universitete, Izvestiya nauchno.Google Scholar
  109. 109.
    Kumar V. (1992): Search, branch and bound, in: Encyclopedia of Artificial Intelligence (2nd edition), ed. Kumar V, 1468–1472, Wiley-Interscience.Google Scholar
  110. 110.
    Le Gall, F.J. (1989): Brownian excursion, trees and measure-valued branching processes, Technical Report, Université Pierre et Marie Curie, Paris.Google Scholar
  111. 111.
    Louchard G. (1987): Exact and asymptotic distributions in digital and binary search trees, Theoretical Informatics and Applications, 21, 479–497.MathSciNetzbMATHGoogle Scholar
  112. 112.
    Lynch W.C. (1965): More combinatorial problems on certain trees, Computer Journal, 7, 299–302.MathSciNetCrossRefGoogle Scholar
  113. 113.
    Lyons R. (1997): Probability and Trees, in press.Google Scholar
  114. 114.
    Lyons R., Pemantle R. and Peres Y. (1993): When does a branching process grow like its mean? Conceptual proofs of L log L criteria, Technical Report, Indiana University.Google Scholar
  115. 115.
    Lyons R., Pemantle R. and Peres Y. (1995): Conceptual proofs of L log L criteria for mean behavior of branching processes, Annals of Probability, 23, 1125–1138.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Mahmoud H. (1993): Distances in plane-oriented recursive trees, Journal of Computers and Applied Mathematics, 41, 237–245.CrossRefGoogle Scholar
  117. 117.
    Mahmoud H.M. (1986): On the average internal path length of m-ary search trees, Acta Informatica, 23, 111–117.MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Mahmoud H.M. (1992): Evolution of Random Search Trees, John Wiley, New York.zbMATHGoogle Scholar
  119. 119.
    Mahmoud H.M. (1994): A strong law for the height of random binary pyramids, Annals of Applied Probability, 4, 923–932.MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Mahmoud H.M. and Pittel B. (1988): On the joint distribution of the insertion path length and the number of comparisons in search trees, Discrete Applied Mathematics, 20, 243–251.MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Mahmoud H. and Pittel B. (1984): On the most probable shape of a search tree grown from a random permutation, SIAM Journal on Algebraic and Discrete Methods, 5, 69–81.MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Mahmoud H., Smythe R.T. and Szymanski J. (1993): On the structure of random plane-oriented recursive trees and their branches, Random Structures and Algorithms, 4, 151–176.MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Marcinkiewicz J. and Zygmund A. (1937): Sur les fonctions indépendantes, Fundamentales de Mathématiques, 29, 60–90.Google Scholar
  124. 124.
    McDiarmid C.J.H. (1990): Probabilistic analysis of tree search, in: Disorder in Physical Systems, McDiarmid C.J.H, editors, 249–260, Oxford Science Publications.Google Scholar
  125. 125.
    McDiarmid C.J.H. (1995): Minimal positions in a branching random walk, Annals of Applied Probability, 5, 128–139.MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    McDiarmid C.J.H. and Provan G.M.A. (1991): An expected-cost analysis of backtracking and non-backtracking algorithms, in: IJCAI-91: Proceedings of the Twelfth International Conference on Artificial Intelligence, 172–177, Morgan Kaufmann Publishing, San Mateo, CA.Google Scholar
  127. 127.
    Meir A. and Moon J.W. (1970): The distance between points in random trees, Journal of Combinatorial theory, 8, 99–103.MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Meir A. and Moon J.W. (1978): On the altitude of nodes in random trees, Canadian Journal of Mathematics, 30, 997–1015.MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Moon J.W. (1970): Counting labelled trees, Canadian Mathematical Congress.Google Scholar
  130. 130.
    Moon J.W. (1973): Random walks on random trees, Journal of the Australian Mathematical Society, 15, 42–53.zbMATHCrossRefGoogle Scholar
  131. 131.
    Nagaev S.V. and Pinelis N.F. (1977): Some inequalities for sums of independent random variables, Theory of Probability and its Applications, 22, 248–256.MathSciNetCrossRefGoogle Scholar
  132. 132.
    Nerman 0 (1981): On the convergence of the supercritical general (C-M-J) branching process, Zeitschrift für Wahrscheinlichkeitstheorie and verwandte Gebiete, 57, 365–395.Google Scholar
  133. 133.
    Neveu J. (1986): Arbres et processus de Galton-Watson, Annales de l’Institut Henri Poincaré, 22, 199–207.MathSciNetzbMATHGoogle Scholar
  134. 134.
    Neveu J. and Pitman J.W. (1989): The branching process in a Brownian excursion, in: Séminaire de Probabilités XXIII, ed. J. Azéma, P. A. Meyer and M. Yor, 1372, 248–257, Lecture Notes in Mathematics, Springer-Verlag, Berlin.Google Scholar
  135. 135.
    Nievergelt J. and Hinrichs K.H. (1993): Algorithms and Data Structures with Applications to Graphics and Geometry, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  136. 136.
    Nievergelt J., Hinterberger H. and Sevcik K.C. (1984): The grid file: an adaptable, symmetric multikey file structure, ACM Transactions on Database Systems, 9, 38–71.CrossRefGoogle Scholar
  137. 137.
    Okamoto M. (1958): Some inequalities relating to the partial sum of binomial probabilities, Annals of Mathematical Statistics, 10, 29–35.zbMATHGoogle Scholar
  138. 138.
    Pakes A.G. (1971): Some limit theorems for the total progeny of a branching process, Advances in Applied Probability, 3, 176–192.MathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    Palmer E.M. (1985): Graphical Evolution, John Wiley, New York.zbMATHGoogle Scholar
  140. 140.
    Pearl J. (1984): Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, Reading, MA.Google Scholar
  141. 141.
    Petrov V.V. (1975): Sums of Independent Random Variables, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  142. 142.
    Pittel B. (1984): On growing random binary trees, Journal of Mathematical Analysis and its Applications, 103, 461–480.MathSciNetzbMATHCrossRefGoogle Scholar
  143. 143.
    Pittel B. (1985): Asymptotical growth of a class of random trees, Annals of Probability, 13, 414–427.MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Pittel B. (1985): Paths in a random digital tree: limiting distributions, Advances in Applied Probability, 18, 139–155.MathSciNetCrossRefGoogle Scholar
  145. 145.
    Pittel B. (1994): Note on the heights of random recursive trees and random m-ary search trees, Random Structures and Algorithms, 5, 337–347.MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Poblete P.V. and Munro J.I. (1985): The analysis of a fringe heuristic for binary search trees, Journal of Algorithms, 6, 336–350.MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    Prusinkiewicz P. and Lindenmayer A. (1990): The Algorithmic Beauty of Plants, Springer-Verlag, New York.zbMATHCrossRefGoogle Scholar
  148. 148.
    Purdom P.W. (1983): Search rearrangement backtracking and polynomial average time, Artificial Intelligence, 21, 117–133.CrossRefGoogle Scholar
  149. 149.
    Pyke R. (1965): Spacings, Journal of the Royal Statistical Society Series B, 7, 395–445.MathSciNetGoogle Scholar
  150. 150.
    Reingold E.M., Nievergelt J. and Deo N. (1977): Combinatorial Algorithms: Theory and Practice, Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  151. 151.
    Rényi A. (1959): Some remarks on the theory of trees, MTA Mat. Kut. Int. Közl, 4, 73–85.zbMATHGoogle Scholar
  152. 152.
    Rényi A. and Szekeres G. (1967): On the height of trees, Journal of the Australian Mathematical Society, 7, 497–507.zbMATHCrossRefGoogle Scholar
  153. 153.
    Riordan J. (1960): The enumeration of trees by height and diameter, IBM Journal of research and develoment, 4, 473–478.MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    Robson J.M. (1979): The height of binary search trees, The Australian Computer Journal, 11, 151–153.MathSciNetGoogle Scholar
  155. 155.
    Robson J.M. (1982): The asymptotic behaviour of the height of binary search trees, Australian Computer Science Communications, p. 88.Google Scholar
  156. 156.
    Robson J.M. (1997): Bounds on the variation of binary search tree heights, Technical Report, Université Bordeaux I I.Google Scholar
  157. 157.
    Rubinstein R.Y. (1982): Generating random vectors uniformly distributed inside and on the surface of different regions, European Journal of Operations Research, 10, 205–209.zbMATHCrossRefGoogle Scholar
  158. 158.
    Samet H. (1990): Applications of Spatial Data Structures, Addison-Wesley, Reading, MA.Google Scholar
  159. 159.
    Samet H. (1990): The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA.Google Scholar
  160. 160.
    Sedgewick R. (1983): Mathematical analysis of combinatorial algorithms, in: Probability Theory and Computer Science, edG. Louchard and G. Latouche, 123–205, Academic Press, London.Google Scholar
  161. 161.
    Seneta E. (1969): Functional equations and the Galton-Watson process, Advances in Applied Probability, 1, 1–42.MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    Sibuya M. (1979): Generalized hypergeometric, digamma and trigamma distributions, Annals of the Institute of Statistical Mathematics, 31, 373–390.MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Smith D.R. (1984): Random trees and the analysis of branch and bound procedures, Journal of the ACM, 31, 163–188.CrossRefGoogle Scholar
  164. 164.
    Smith R.L. (1984): Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions, Operations Research, 32, 1296 1308.Google Scholar
  165. 165.
    Stepanov V.E. (1969): On the distribution of the number of vertices in strata of a random tree, Theory of Probability and its Applications, 14, 65–78.zbMATHCrossRefGoogle Scholar
  166. 166.
    Stone H.S. and Sipala P. (1986): The average complexity of depth-first search with backtracking and cutoff, IBM Journal of Research and Development, 30, 242–258.zbMATHCrossRefGoogle Scholar
  167. 167.
    Szpankowski W. (1988): Some results on V-ary asymmetric tries, Journal of Algorithms, 9, 224–244.MathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    Szymanski J. (1988): On the nonuniform random recursive tree, Annals of Discrete Mathematics, 33, 297–307.Google Scholar
  169. 169.
    Timofeev E.A. (1984): Random minimal trees, Theory of Probability and its Applications, 29, 134–141.MathSciNetzbMATHCrossRefGoogle Scholar
  170. 170.
    Timofeev E.A. (1988): On finding the expected length of a random minimal tree, Theory of Probability and its Applications, 33, 361–365.MathSciNetzbMATHCrossRefGoogle Scholar
  171. 171.
    Viennot X.V. (1990): Trees everywhere, in: CAAP 90, ed. A. Arnold, 431, 18–41, Lecture Notes in Computer Science, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  172. 172.
    Vitter J.S. and Flajolet P. (1990): Average-case analysis of algorithms and data structures, in: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, ed. J. van Leeuwen, 431–524, MIT Press, Amsterdam.Google Scholar
  173. 173.
    Wah B.W. and Yu C.F. (1985): Stochastic modeling of branch-and-bound algorithms with best-first search, IEEE Transactions of Software Engineering, SE-11, 922–934.Google Scholar
  174. 174.
    Walker A. and Wood D. (1976): Locally balanced binary trees, Computer Journal, 19, 322–325.zbMATHCrossRefGoogle Scholar
  175. 175.
    Weiner H. (1984): Moments on the maximum in a critical branching process, Journal of Applied Probability, 21, 920–923.MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    Yaglom A.M. (1947): Certain limit theorems of the theory of branching processes, Dokl. acad. nauk SSSR, 56, 795–798.MathSciNetzbMATHGoogle Scholar
  177. 177.
    Zhang W. and Korf R.E. (1992): An average-case analysis of branch-and-bound with applications, in: Proceedings of the 10th National Conference on AIAAAI-92, 1–6, San Jose, CA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Luc Devroye
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations