The Probabilistic Method

  • Michael Molloy
Part of the Algorithms and Combinatorics book series (AC, volume 16)

Abstract

Erdös is usually credited as being the pioneer of the probabilistic method, beginning with his seminal 1947 paper [21], although the probabilistic method had been used in at least two previous occasions by Turán in 1934[66] and by Szele in 1943[63]. By now, it is widely recognized as one of the most important techniques in the field of combinatorics. In this short survey, we will introduce a few of the basic tools and describe some of the areas in which the method has had impact.

Keywords

Sorting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai M., Komlós J. and Szemerédi E. (1980): A note on Ramsey numbers, J. Comb. Th. A 29, 354–360.Google Scholar
  2. 2.
    Ajtai M., Komlós J. and Szemerédi E. (1981): A dense infinite Sidon sequence, Eur. J. Comb. 2, 1–11.MATHGoogle Scholar
  3. 3.
    Alon N. (1996): Disjoint directed cycles. J. Comb. Th. (B) 68, 167–178.MATHCrossRefGoogle Scholar
  4. 4.
    Alon N. (1996): Independence numbers of locally sparse graphs and a Ramsey type problem, Rand. Struct. Alg. 9, 271–278.MATHCrossRefGoogle Scholar
  5. 5.
    Alon N. (1992): The strong chromatic number of a graph. Random Structures and Algorithms, 3, 1–7.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Alon N. (1991): A parallel algorithmic version of the Local Lemma, Random Structures and Algorithms, 2, 367–378.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Alon N. (1988): The linear arboricity of graphs. Isr. J. Math., 62, 311–325.MATHCrossRefGoogle Scholar
  8. 8.
    Alon N., Krivelevich M. and Sudakov B. (1998): List colouring of random and pseudo-random graphs, preprint.Google Scholar
  9. 9.
    Alon N. and Linial N. (1989): Cycles of length 0 modulo k in directed graphs. J. Comb. Th. (B) 47, 114–119.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Alon N., McDiarmid C. and Molloy M. (1996): Edge-disjoint cycles in regular directed graphs, J. Graph Th. 22, 231–237.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Alon N. and Spencer J. (1992): The Probabilistic Method. Wiley.Google Scholar
  12. 12.
    Azuma K. (1967): Weighted sums of certain dependent random variables, Tokuku Math. Journal 19, 357–367.MathSciNetMATHGoogle Scholar
  13. 13.
    Beck J. (1991): An algorithmic approach to the Lovész Local Lemma, Random Structures and Algorithms, 2, 343–365.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bermond J. and Thomassen C. (1981): Cycles in digraphs–a survey. J. Graph Th. 5, 1–43.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Behzad M. (1965): Graphs and Their Chromatic Numbers, Ph.D. thesis, Michigan State University.Google Scholar
  16. 16.
    Beutelspacher A. and Hering P. (1984)• Minimal graphs for which the chromatic number equals the maximal degree, Ars Combinatorica 18 201–216.Google Scholar
  17. 17.
    Bollobâs B. (1985): Random Graphs, Academic Press, London.MATHGoogle Scholar
  18. 18.
    Bollobés B. and Harris A. (1985): List-colourings of graphs, Graphs and Comb. 1, 115–127.CrossRefGoogle Scholar
  19. 19.
    Borodin O. and Kostochka A. (1997): On an upper bound on a graph’s chromatic number, depending on the graphs’s degree and density J.C.T.(B) 23, 247–250.MathSciNetGoogle Scholar
  20. 20.
    Broder A.Z., Frieze A. and Upfal E. (1997): Static and dynamic path selection on expander graphs: a random walk approach, STOC.Google Scholar
  21. 21.
    Erdös P. (1947): Some remarks on the theory of graphs, Bull. Amer Math. Soc. 53, 292–294.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Erdös P. (1959): Graph theory and probability, Canadian J. of Math. 11, 34–38.MATHCrossRefGoogle Scholar
  23. 23.
    Erdös P. (1961): Graph theory and probability II, Canadian J. of Math. 13, 346–352.MATHCrossRefGoogle Scholar
  24. 24.
    Erdös P. and Lovâsz L. (1975): Problems and results on 3-chromatic hyper-graphs and some related questions, in: “Infinite and Finite Sets” (A. Hajnal et. al. Eds), Colloq. Math. Soc. J. Bolyai 11, North Holland, Amsterdam, 609–627.Google Scholar
  25. 25.
    Erdös P., Rubin A. and Taylor H. (1979): Choosability in graphs, Congr. Num. 26, 125–157.Google Scholar
  26. 26.
    Erdös P. and Selfridge J. (1973): On a combinatorial game, J. Comb. Th. (A) 14, 298–301.MATHCrossRefGoogle Scholar
  27. 27.
    Erdös P., Suen S. and Winkler P. (1995): On the size of a random maximal subgraph, Random Structures and Algorithms 6, 309–318.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Fernandez de la Véga W. (1983): On the maximum cardinality of a consistent set of arcs in a random tournament, J. Comb. Th. (B) 35, 328–332.MATHCrossRefGoogle Scholar
  29. 29.
    Frieze A. (1991): On the length of the longest monotone increasing subsequence in a random permutation, Ann. Appl. Prob. 1, 301–305.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Frieze A. and Molloy M. (1998): Splitting expander graphs, in preparation.Google Scholar
  31. 31.
    Häggkvist R. and Janssen J. (1997): New bounds on the list chromatic index of the complete graph and other simple graphs, Combin., Prob. and Comp. 6, 273–295.CrossRefGoogle Scholar
  32. 32.
    Hind H., Molloy M. and Reed B. (1998): Colouring a graph frugally, Combinatorica, to appear.Google Scholar
  33. 33.
    Hind H., Molloy M. and Reed B. (1998): Total colouring with d+poly(logd) colours, SIAM J. of Computing, to appear.Google Scholar
  34. 34.
    Heoffding W.J. (1963): Probability inequalities for sums of bounded random variables, J. amer. Statist. Assoc., 58, 713–721.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Jensen T. and Toft B. (1995): Graph colouring problems, Wiley New York.Google Scholar
  36. 36.
    Johansson A. (1996): Asymptotic choice number for triangle free graphs, DIMACS Technical Report 91–5.Google Scholar
  37. 37.
    Johansson A. (1998): The choice number of sparse graphs, manuscript.Google Scholar
  38. 38.
    Kahn J. (1996): Asymptotically good list-colorings, J. Combinatorial Th. (A), 73, 1–59.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Kahn J. (1996): Asymptotics of the chromatic index for multigraphs, J. Combinatorial Th. (B), 68, 233–255.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Kahn J. (1998): Asymptotics of the list-chromatic index for multigraphs, manuscript.Google Scholar
  41. 41.
    Kim J.H. (1995): On Brooks’ Theorem for sparse graphs, Combinatorics, Probability and Computing 4, 97–132.MATHCrossRefGoogle Scholar
  42. 42.
    Kim J.H. (1995): The Ramsey number R(3, t) has order of magnitude t2/ log t., Random Structures and Algorithms 7, 173–207.MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Krivelevich M. (1995): Bounding Ramsey numbers through large deviation inequalities, Random Struct. and Alg. 7, 145–155.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Lawrence J. (1978): Covering the vertex set of a graph with subgraphs of smaller degree, Disc. Math 21, 61–68.MathSciNetMATHGoogle Scholar
  45. 45.
    Lagan B. and Shepp L. (1977): A variational problem for Young tableaux, Adv. Math. 26, 206–222.Google Scholar
  46. 46.
    Lovâsz L. (1968): On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hung. 19, 59–67.MATHCrossRefGoogle Scholar
  47. 47.
    McDiarmid C. (1989): On the method of bounded differences. Surveys in Combinatorics, Proceedings of the Twelfth British Combinatorial Conference, 148–188.Google Scholar
  48. 48.
    Molloy M. and Reed B. (1997): A bound on the strong chromatic index of a graph, J. of Comb. Th. (B) 69, 103–109.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Molloy M. and Reed B. (1998): A bound on the total chromatic number, Combinatorica, to appear.Google Scholar
  50. 50.
    Molloy M. and Reed R. (1998): Asymptotically better list colourings, manuscript.Google Scholar
  51. 51.
    Molloy M. and Reed B. (1998): Further algorithmic aspects of the Local Lemma, to appear in the proccedings of the 30th ACM Symposium on Theory of Computing.Google Scholar
  52. 52.
    Molloy M. and Reed B. (1998): Graph Colouring via the Probabilistic Method, preprint.Google Scholar
  53. 53.
    Molloy M. and Reed B.: Graph Colouring with the Probabilistic Method, a book in preperation.Google Scholar
  54. 54.
    Nesetril J. and Rödl V. (1979): A short proof of the existence of highly chromatic hypergraphs without short cycles, J. Comb. Th. (B) 27, 225–227.MATHCrossRefGoogle Scholar
  55. 55.
    Pippenger N. and Spencer J. (1989): Asymptotic behavior of the chromatic index for hypergraphs, J. Combinatorial Th. (A) 51, 24–42.MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Reed B. (1997): X, 4 and w, Journal of Graph Theory, to appear.Google Scholar
  57. 57.
    Reed B. (1998): A strenghtening of Brooks’ Theorem, manuscript.Google Scholar
  58. 58.
    Rödl V. (1985): On a packing and covering problem, Europ. J. Combinatorics 5, 69–78.Google Scholar
  59. 59.
    Shearer J. (1983): A note on the independence number of triangle-free graphs, Disc. Math. 46, 83–87.MathSciNetMATHGoogle Scholar
  60. 60.
    Shearer J. (1995): On the independence number of sparse graphs, Rand. Struc. Alg. 7, 269–271.MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Spencer J. (1977): Asymptotic lower bounds for Ramsey functions, Disc. Math. 20, 69–76.Google Scholar
  62. 62.
    Spencer J. (1994): Maximal triangle-free graphs and the Ramsey number R(3, k), manuscript.Google Scholar
  63. 63.
    Szele T. (1943): Kombinatorikai vizsgâlatok az irânyitott teljes gr’affal kapcsolatban, Mat. Fiz. Lapok 50, 233–256.MathSciNetGoogle Scholar
  64. 64.
    Talagrand M. (1995): Concentration of measure and isoperimetric inequalities in product spaces. Institut Des Hautes Études Scientifiques, Publications Mathématiques 81, 73–205.MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Thomassen C. (1983): Disjoint cycles in digraphs, Combinatorica 3, 393–396.MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Turân P. (1934): On a theorem of Hardy and Ramanujan, J. London Math Soc. 9, 274–276.CrossRefGoogle Scholar
  67. 67.
    Versik A. and Kerov C. (1977): Asymptotics for the Plancherai measure of the symmetric group and a limiting form for Young tableaux, Dokl. Akad. Nauk USSR 233, 1024–1027.MathSciNetGoogle Scholar
  68. 68.
    Vizing V.G. (1968): Some unsolved problems in graph theory, Russian Math Surveys 23, 125–141.MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Vizing V. (1976): Colouring the vertices of a graph with prescribed colours, Diskret. Analiz. 29, 3–10.MathSciNetMATHGoogle Scholar
  70. 70.
    Zykov A. (1949): On some problems of linear complexes, Mat. Sbornik N.S. 24, 163–188. English translation in Amer. Math. Soc. Transl. 79 (1952).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michael Molloy
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations