Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 1))

Abstract

One of the most important developments beyond the original concept of magnetic resonance is so-called double resonance in which, as the name suggests, one excites one resonant transition of a system while simultaneously monitoring a different transition. This area of science contains a succession of truly brilliant inventions which are awe inspiring to contemplate. There are many reasons for performing double resonance. We shall try to give a picture of the range of reasons by recounting some of the pioneering double resonance experiments. In so doing we shall rather arbitrarily break the discussion into three broad categories. The first we call the Overhauser-Pound Family of Double Resonance, which includes such topics as dynamic nuclear polarization, electron-nuclear double resonance (ENDOR), solid-state masers, and all varieties of lasers. The second category is a potpouri of special methods such as spin echo double resonance. The third category is the method invented by Hahn for using the strong resonance of an abundant nucleus to detect the weak resonances of a rare species by greatly enhancing the effectiveness of the normal coupling between the two spin systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. V. Pound: Phys. Rev. 79, 685 (1950)

    Article  ADS  Google Scholar 

  2. T. R. Carver, C. P. Slichter: Phys. Rev. 92, 212 (1953); Phys. Rev. 102, 975 (1956)

    Article  ADS  Google Scholar 

  3. A. W. Overhauser: Phys. Rev. 91, 476 (1953); 92, 411 (1953)

    Google Scholar 

  4. Dynamic Nuclear Orientation, ed. by C. D. Jeffries (Interscience Publ., New York 1963)

    Google Scholar 

  5. C. D. Jeffries: Phys. Rev. 106, 164 (1957); 117, 1056 (1960)

    Article  ADS  Google Scholar 

  6. A. Abragam, J. Combrisson, I. Solomon: Compt. Rend. 247, 2237 (1958)

    Google Scholar 

  7. E. Erb, J. L. Montchane, J. Uebersfeld: Compt. Rend. 246, 2237 (1958)

    Google Scholar 

  8. G. Feher: Phys. Rev. 105, 1122 (1957)

    Article  ADS  Google Scholar 

  9. H. Seidel, H. C. Wolf: In Physics of Color Centers, ed. by W. Beali Fowler (Academic Press, New York 1968)

    Google Scholar 

  10. J. P. Gordon, H. J. Zeiger, C. H. Townes: Phys. Rev. 95, 2821 (1954)

    Article  Google Scholar 

  11. Nobel Lectures-Physics 1963–1970 (Elsevier Publishing Co., Amsterdam 1972)

    Google Scholar 

  12. N. G. Basov, A. M. Prokhorov: J. Exp. Theoret. Phys. (U.S.S.R.) 27, 431 (1954)

    Google Scholar 

  13. N. Bloembergen: Phys. Rev. 104, 324 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  14. D. E. Kaplan, E. L. Hahn: J. Phys. Radium 19, 821 (1958)

    Article  Google Scholar 

  15. J. B. Boyce: Thesis, Univ. of Illinois (1972)

    Google Scholar 

  16. F. Bloch: Phys. Rev. 93, 944 (1954)

    Article  Google Scholar 

  17. V. Royden: Phys. Rev. 96, 543 (1954)

    Article  ADS  Google Scholar 

  18. A. L. Bloom, J.N. Schoolery: Phys. Rev. 97, 1261 (1955)

    Article  ADS  Google Scholar 

  19. E. H. Turner, A. M. Sachs, E. M. Purcell: Phys. Rev. 76, 465 (A) (1949)

    Article  Google Scholar 

  20. L. C. Hebel, C. P. Slichter: Phys. Rev. 113, 1504 (1959)

    Article  ADS  Google Scholar 

  21. A. G. Anderson: Phys. Rev. 115, 863 (1959)

    Article  ADS  Google Scholar 

  22. A. G. Redfield: Phys. Rev. 130, 589 (1963)

    Article  ADS  Google Scholar 

  23. N. G. Fernelius: Proc. of the XIV Colloque Ampere (1966) p. 497

    Google Scholar 

  24. R. E. Slusher, E. L. Hahn: Phys. Rev. 166, 332 (1968)

    Article  ADS  Google Scholar 

  25. M. Minier: Phys. Rev. 182, 437 (1969)

    Article  ADS  Google Scholar 

  26. S. R. Hartmann, E. L. Hahn: Phys. Rev. 128, 2042 (1962)

    Article  ADS  MATH  Google Scholar 

  27. N. Bloembergen, P. Sorokin: Phys. Rev. 100, 865 (1958)

    Article  ADS  Google Scholar 

  28. F. M. Lurie, C. P. Slichter: Phys. Rev. 133, A1 108 (1964)

    Article  ADS  Google Scholar 

  29. C. P. Slichter, W. C. Holton: Phys. Rev. 122, 1701 (1961)

    Article  ADS  Google Scholar 

  30. R. E. Slusher, E. L. Hahn: Phys. Rev. 166, 332 (1968)

    Article  ADS  Google Scholar 

  31. P. R. Spencer, N. D. Schmid, C. P. Slichter: Phys. Rev. Bl, 2989 (1970)

    Google Scholar 

  32. David V. Lang, P, R. Moran: Phys. Rev. Bl, 53 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slichter, C.P. (1978). Double Resonance. In: Principles of Magnetic Resonance. Springer Series in Solid-State Sciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12784-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12784-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12786-5

  • Online ISBN: 978-3-662-12784-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics