Trace Elements of Ostracod Shell Used as an Indicator for Palaeoenvironmentary Reconstruction

  • Yuhong Zhao
Part of the Palaeontologia Cathayana book series (PALAEONTOLOGIA, volume 5)


Trace elements of forty-four ostracod shells have been accurately measured by using electron probe in conjunction with SEM. The specimens comprise four groups: living marine, living non-marine, fossil marine and fossil non-marine ostracods. The result reveals that these ostracod shells contain the following chemical elements: Calcium (Ca), Silica (Si), Aluminium (Al), Iron (Fe), Magnesium (Mg), Potassium (K), Chlorine (Cl), Sulphur (S), Sodium (Na) and Barium (Ba) (in their order of abundance). Ca is most abundant and accounts for 31–36%, and the total amount of other trace elements is less than 10%. There is obvious difference in trace elements between the marine ostracod shell and the freshwater one. This paper shows how they can be used to deduce the palaeoenvironment in which fossil ostracods once lived.

These analytical results of the chemical content of ostracod shells help to throw light on the cause of different colours in fossilised shells and the process of their formation.


Magnesium Carbonate Marine Facies East Lake Palaeoenvironmental Reconstruction Shell Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bodergat, A. M., 1983. Les ostracodes, temoins de leur environnement: Approche chimique et écologie en milieu lagunaire et oceanique. Docum. Lab. Geol., Lyon, 88, 1–246.Google Scholar
  2. Bodergat, A. M. and Andreani, A. M., 1981. Mise en évidence de la réponse adaptative d’une espèce euryhaline Cyprideis torosa (Jones, 1950) à des conditions écologiques difficiles par l’analyse multi-elementaire en spectrometrie de masse à étincelle. In: Martinell, J. (ed.), Intern. Symp. On “Concept and method in palaeontology”. Dept. Palaeontologia, Univ. Barcelona, 135–1139.Google Scholar
  3. Cadot, H. M. and Kaesler, R. L., 1977. Magnesium content of calcite in carapaces of benthic marine Ostracoda. Palaeont. Contr. Univ. Kansas, Lawrence, 87, 1–23.Google Scholar
  4. Cadot, H. M., Kaesler, R. L. and Schmus, W. R. Van., 1975. Application of the electron mocroprobe analyzer to the study of ostracode carapace. Bull. Amer. Paleont., Ithaca, 65 (282), 577–585.Google Scholar
  5. Chave, K. E., 1954. Aspects of the biogeochemistry of magnesium. 1. Calcareous marine organisms. J. Geol., Chicago, 62 (3), 266–283.CrossRefGoogle Scholar
  6. Chivas, A. R., De Deckker, P. and Shelley, J. M. G., 1983. Magnesium, strontium and barium partitioning in nonmarine ostracode shells and their use in palaeoenvironmental reconstructions–A preliminary study. In Maddocks. R. F. (ed.), Applications of Ostracoda. Univ. Houston Geosc., Houston, 238–249.Google Scholar
  7. Clarke, F. W. and Wheeler, W. C., 1917. The inorganic constituents of marine invertebrates. U. S. Geol. Surv. Prof. Paper, 124.Google Scholar
  8. Kesling. R. V. 1951. The morphology of ostracode molt stages. Illinois Biological Monographs, Illinois, 21, 1–324.Google Scholar
  9. Müller, G. W. 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Neeres Abschnitte: Fauna und Flora Golfes von Neapel, Berlin, 21.Google Scholar
  10. Rosenfeld, A. 1979. Structure and secretion of the carapace in some living ostracodes. Lethaia, 12, 353–379.CrossRefGoogle Scholar
  11. Sohn, I. G. 1958. Chemical constituents of ostracodes; Some applications to paleontology and paleoecology, J. Paleont., 32 (4), 730–736.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Yuhong Zhao
    • 1
  1. 1.Nanjing Institute of Geology and PalaeontologyAcademia SinicaChina

Personalised recommendations