Pädiatrie pp 268-372 | Cite as

Stoffwechselkrankheiten

  • K. Ullrich
  • J. Schaub
  • J. Spranger
  • A. Kohlschütter
  • C. Bachmann
  • E. Harms
  • U Wendel
  • K. Baerlocher
  • H. Böhles
  • J. Smeitink
  • J. Gärtner
  • A. Roscher
  • K. Widhalm
  • A. H. van Gennip

Zusammenfassung

Die verschiedenen Glykogenspeicherkrankheiten („glycogen storage disease“, GSD) sind Folge verminderter Aktivitäten unterschiedlicher Enzyme und Transportproteine des Glykogen- und Glukosestoffwechsels. Es kommt zur vermehrten zytoplasmatischen und/oder lysosomen Anreicherung normal oder abnormal strukturierter Glykogenmoleküle (Abb. 30.1). Da Lysosomen in allen Zellen nachweisbar sind, weisen Patienten mit lysosomaler Glykogenspeicherkrankheit (GSD II) immer generalisierte Speicherphänomene auf. Bei den übrigen ist die zytoplasmatische Glykogenspeicherung mit Ausnahme der GSD IV im wesentlichen auf Leber- und Muskelgewebe beschränkt.

Literatur

  1. DiMauro S, Servidei S, Tsujino S (1997) Disorders of carbohydrate metabolism: Glycogen storage diseases. In: Rosenberg RN, Prusiner SB, DiMauro S, Barchi R (eds) The Molecular and Genetic Bases of Neurological Disease. Butterworth-Heinemann, Boston, pp 1067–1097Google Scholar
  2. Moses SM (199oa) Muscle glycogenosis. J Inher Metab Dis, 13: 1–14Google Scholar
  3. Moses SM (199ob) Pathophysiology and dietary treatment of the glycogen storage diseases. J Pediatr Gastroenterol Nutrit n: 1–20Google Scholar
  4. Moses SM, Shin YS, Smit GPA, Ullrich K (eds) (1993) Glycogen storage disease I. Eur J Paediatr 152 /1Google Scholar
  5. Santer R, Schneppenheim R, Suter O, Schaub J, Steinmann B (1998) Fanconi-Bickel-Syndrom - The original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur J Pediatr 157: 783–797Google Scholar
  6. Smit GPA, Fernandes J, Leonard JV, Matthews EE, Moses SM, Odievre M, Ullrich K (1990) The long-term outcome of patients with glycogen storage disease. J Inher Metab Dis 13: 411–418PubMedCrossRefGoogle Scholar
  7. Bax MCO, Colville GA (1995) Behaviour in mucopolysaccharide disorders. Arch Dis Childh 73: 77–81PubMedCrossRefGoogle Scholar
  8. Clary MA, Wraith JE (1993) Management of mucopolysaccharidosis type III. Arch Dis Childh 69: 403-406Google Scholar
  9. Hopwood JJ, Morris CP (1990) The mucopolysaccharidoses. Mol Biol Med 7: 381–404PubMedGoogle Scholar
  10. Fensom AH, Benson PF (1994) Recent advances in the prenatal diagnosis of the mucopolysaccharidoses. Prenat Diagn 14: 1–12Google Scholar
  11. Isbrandt D, Arlt G, Brooks DA et al. (1994) Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Am J Hum Genet 54: 454-463Google Scholar
  12. Northover H, Cowie RA, Wraitz JE (1996) Mucopolysaccharidosis type IVA (Morquio syndrome): a clinical review. J Inherit Metab Dis 19: 357–365Google Scholar
  13. Natowicz MR, Short MP, Wang Y, Dickersin GR, Gebhardt MC, Rosenthal DI, Sims K, Rosenberg AE (1996) Clinical and biochemical manifestations of hyaluronidase deficiency. New Engl J Med 335: 1029–1033Google Scholar
  14. Scott HS, Bunge S, Gal A et al. (1995) Molecular genetics of mucopolysaccharidosis type I. Hum Mutat 6: 228–302Google Scholar
  15. Walker, RWM, Darowski M, Morris P, Wraith JE (1994) Anaesthesia and mucopolysaccharidoses. Anaesthesia 49: 1078–1084Google Scholar
  16. Bax MCO, Colville GA (1995) Behaviour in mucopolysaccharide disorders. Arch Dis Childh 73: 77–81Google Scholar
  17. Abb. 31.4. Abbaudefekte der Oligosaccharidkette von Glykoproteinen. NeuAc N-Acetylneuraminsäure; Gal Galaktose; G1cNAc N-Acetylglukosamin; Man Mannose; Fuc= Fucose; ASN= Asparagin. ( Mod. nach Cantz u. Ullrich-Bott 1990 )Google Scholar
  18. Cantz M, Ulrich-Bott B (1990) Disorders of Glycoprotein Degradation. J Inher Metab Dis 13: 523–537Google Scholar
  19. Leroz, JG (1996) Oligosaccharidoses. In: Rimoin DL, Connor JM, Pyeritz RE (eds) Principles and Practice of Medical Genetics. Churchill Livingstone, New York, pp 2081–2013Google Scholar
  20. Thomas GH, Beaudet AL (1996) Disorders of Glycoprotein Degradation. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Basis of Inherited Disease. McGraw Hill, New York, pp 2563–2587Google Scholar
  21. Jaeken J, van Schaftingen E (1995) Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 377: 318–320PubMedCrossRefGoogle Scholar
  22. Jaeken J, Stibler H, Hagberg B (1991) The carbohydrate-deficient glycoprotein syndrome. Acta Paediatr Scand Supp1379: 6–20Google Scholar
  23. Jaeken J, Schachter H, Carchon H, de Cock P, Coddeville B, Spik G (1994) Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localized N-acetylglucosaminyltransferase II. Arch Dis Child 71: 123–127PubMedCrossRefGoogle Scholar
  24. Körner Ch, Knauer R, Holzbach U, Hanefeld F, Lehle L, Figura von K (1998) Carbohydrate deficient glycoprotein syndrome type V: Deficiency of dolichyl-P-Glc: Man9GIcNAc2 PP-dolichyl glucosyltransferase. Proc Natl Acad Sci 95: 13200–13205PubMedCrossRefGoogle Scholar
  25. Marquardt T, Brune T, Lühn K et al. (1999) Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J Pediatr 134: 681–688Google Scholar
  26. Niehues R, Hasilik M, Altern G et al. (1998) Carbohydrate-deficient glycoprotein syndrome Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 1o1: 1414–1420Google Scholar
  27. Stibler H, Westenberg B, Hanefeld F, Hagberg B (1993) Carbohydrate-deficient glycoprotein (CDG) syndrome–a new variant, type III. Neuropediatrics 24: 51–52Google Scholar
  28. Stibler H, Stephani U, Kutsch U (1995) Carbohydrate-deficient glycopro- tein syndrome - a fourth subtype. Neuropediatrics 26: 235–237Google Scholar
  29. Brett EM (1997) Paediatric Neurology. 3rd ed. Churchill Livingstone, New YorkGoogle Scholar
  30. Krivit W, Shapiro EG, Peters C et al. (1998) Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. New Engl J Med 338: 1119–1126PubMedCrossRefGoogle Scholar
  31. Menkes JH (1995) Textbook of Child Neurology. 5th ed. Williams and Wilkins, BaltimoreGoogle Scholar
  32. Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL (eds) (1997) The molecular and genetic basis of neurological disease. 2nd ed. Butterworth-Heinemannn, BostonGoogle Scholar
  33. Scriver CR, Beaudet AL, Sly WS, Valle D (eds) (1995) The metabolic and molecular basis of inherited disease. 7th ed. McGraw-Hill, New YorkGoogle Scholar
  34. Vanier MT (1997) Phenotypic and genetic heterogeneity in NiemannPick disease type C: current knowledge and practical implications. Wien Klin Wochenschr 109: 68–73PubMedGoogle Scholar
  35. Bachmann C (1992) Ornithine carbamoyltransferase deficiency: findings, models and problems. J Inher Metab Dis 15: 578–591Google Scholar
  36. Bachmann C (1998) Satellite Meeting on Advances in Inherited Urea Cycle Disorders. Recent results–new questions. J Inher Metab Dis 21 /11: 1–5CrossRefGoogle Scholar
  37. Feillet F, Leonard JV (1998) Alternative pathway therapy for urea cycle disorders. J Inher Metab Dis 21 /1: 101–111PubMedCrossRefGoogle Scholar
  38. Msall M, Batshaw ML, Suss R, Brusilow SW, Melits ED (1984) Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea cycle enzymopathies. N Engl J Med 31o: 1500–1505Google Scholar
  39. Summar ML (1998) Molecular genetic research into carbamoyl-phosphate synthase I: Molecular defect and linkage markers. J Inher Metab Dis 21 /1: 30–39PubMedCrossRefGoogle Scholar
  40. Tuchman M, Morizono H, Rajagopal BS, Plante RJ, Allewel NM (1998) The biochemical and molecular spectrum of ornithine transcarbamylase deficiency. J Inher Metab Dis 21 /1: 40–58PubMedCrossRefGoogle Scholar
  41. Uchino T, Endo F, Matsuda I (1998) Neurodevelopmental outcome of longterm therapy of urea cycle disorders in Japan. J Inher Metab Dis 21 /1: 151–159PubMedCrossRefGoogle Scholar
  42. Aynsley-Green A,Soltesz G (1985) Hypoglycemia in Infancy and Childhood. Churchill Livingstone, EdinburghGoogle Scholar
  43. Cornblath M, Schwarz R (1994) Disorders of Carbohydrate Metabolism in Infancy, 3rd ed. Blackwell Scientific Publications, Oxford, UK Stanley CA (1997) Hyperinsulinism in Infants and Children. Pediatr ClinN AM 44: 363–374Google Scholar
  44. Williams AF (1997) Hypoglycaemia of the newborn: a review. WHO Bulletin OMS 75: 261–290Google Scholar
  45. Azen C, Koch R, Friedman E, Wenz E, Fishier K (1996) Summary of findings from the United States Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155/Suppl 1: S29 - S32CrossRefGoogle Scholar
  46. Burgard P, Rupp A, Konecki DS, Trefz FK, Schmidt H, Lichter Konecki U (1996a) Phenylalanine hydroxylase genotypes, predicted residual enzyme activity and phenotypic parameters of diagnosis and treatment of phenylketonuria. Eur J Pediatr 155/Suppl 1: S11 - S15CrossRefGoogle Scholar
  47. Burgard P, Schmidt E, Rupp A, Schneider W, Bremer HJ (1996b) Intellectual development of the patients of the German Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155/Suppl 1: S33 - S38CrossRefGoogle Scholar
  48. Burgard P, Rey F, Rupp A, Abadie V, Rey J (1997) Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: results of a cross-national and cross-sectional study. Pediatr Res 41: 368–374Google Scholar
  49. Güttler F, Guldberg P (1996) The influence of mutations on enzyme activity and phenylalanine tolerance in phenylalanine hydroxylase deficiency. Eur J Pediatr 155/Supp11: S6 - S10Google Scholar
  50. Koch R, Fishler K, Azen C, Guldberg P, Güttler F (1997) The relationship of genotype to phenotype in phenylalanine hydroxylase deficiency. Biochem Mol Med 6o: 92–101CrossRefGoogle Scholar
  51. Möller HE, Weglage J, Wiedermann D, Vermathen P, Bick U, Ullrich K (1997) Kinetics of phenylalanine transport at the human blood-brain barrier investigated in vivo. Brain Res 778: 329–337Google Scholar
  52. Przyrembel H (1996) Recommendations for protein and amino acid intake in phenylketonuria patients. Eur J Pediatr 1996 155/Suppl 1: S130 - S131CrossRefGoogle Scholar
  53. Schmidt E, Burgard P, Rupp A (1996) Effects of concurrent phenylalani-ne levels on sustained attention and calculation speed in patients treated early for phenylketonuria. Eur J Pediatr 155/Suppl 1: S82 - s86CrossRefGoogle Scholar
  54. Weglage J, Ullrich K, Pietsch M, Flinders B, Güttler F, Harms E (1997) Intellectual, neurologic, and neuropsychologic outcome in untreated subjects with nonphenylketonuric hyperphenylalaninemia. German Collaborative Study on Phenylketonuria. Pediatr Res 42: 378–384Google Scholar
  55. Hanley WB, Koch R, Levy HL, Matalon R, Rouse B, Azen C, Cruz F de la(1996) The North American Maternal Phenylketonuria Collaborative Study, developmental assessment of the offspring: preliminary report. Eur J Pediatr 155/Supp11: S169–S172Google Scholar
  56. Lenke RR, Levy HL (1980) Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 303: 1202–1208Google Scholar
  57. Levy HL, Waisbren SE, Lobbregt D et al. (1996) Maternal non-phenylketonuric mild hyperphenylalaninemia. Eur J Pediatr 155/Suppl 1: Szo-S25Google Scholar
  58. Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiencies. J Inher Metab Dis 19: 8–14PubMedCrossRefGoogle Scholar
  59. Matalon R, Michals K, Blau N, Rouse B (1989) Hyperphenylalaninemia due to inherited deficiencies of tetrahydrobiopterin. Adv Pediatr 36: 67–89PubMedGoogle Scholar
  60. Holme E, Lindstedt S (1995) Diagnosis and management of tyrosinemia type I. Curr Opin Pediatr 7: 726–732Google Scholar
  61. Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340 /8823: 813–817PubMedCrossRefGoogle Scholar
  62. Goldsmith LA, Kang E, Bienfang DC, Jimbow K, Gerald P, Baden HP (1973) Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr 83: 798–805PubMedCrossRefGoogle Scholar
  63. Hervé F, Moreno JL, Ogier H et al. (1986) Kératite „inguérissable“ et hyperkératose palmo-plantaire chronique avec hypertyrosinémie. Guerison par un regime pauvre en tyrosine. Tyrosinémie de type II. Arch Fr Pediatr 43: 19–22Google Scholar
  64. O’Brien WM, La Du BN, Bunim JJ (1963) Biochemical, pathological and clinical aspects of alcaptonuria, ochronosis and ochronotic arthropathy. Am J Med 34: 813–838CrossRefGoogle Scholar
  65. Hazleman BL, Adebajo AO (1993) Alcaptonuria. In: Royce PM, Steinmann B (eds) Connective Tissue and Ist Heritable Disorders. Wiley-Liss, New York, pp 591–602Google Scholar
  66. Chuang DT, Shih VE (1995) Disorders of branched-chain amino acid and keto acid metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw-Hill, New York, pp 1239–1277Google Scholar
  67. Korein J, Sansaricq C, Kalmijn M, Honig J, Lange B (1994) Maple syrup urine disease: clinical, EEG, and plasma amino acid correlations with a theoretical mechanism of acute neurotoxicity. Intern J Neuroscience 79: 21–45Google Scholar
  68. Rashed MS, Ozand PT, Bucknall MP, Little D (1995) Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrosprary tandem mass spectrometry. Pediatr Res 28: 324–331Google Scholar
  69. Berry GT,Yudkoff M, Segal S (1988) Isovaleric acidemia: medical and neu- rodevelopmental effects of long-term therapy. J Pediatr 113: 58–64Google Scholar
  70. Fries MH, Rinaldo P, Schmidt-Sommerfeld E, Jurecki E, Packman S (1996) Isovaleric acidemia: response to a leucine load after three weeks of supplementation with glycine, L-carnitine, and combined glycine-carnitine therapy. J Pediatr 129: 449–452Google Scholar
  71. Gibson KM, Elpeleg ON, Jakobs C, Costeff H, Kelley RI (1993) Multiple syn- dromes of 3-methylglutaconic aciduria. Pediatr Neurol9: 120–123Google Scholar
  72. Nyhan WL, Ozand T (1998) 3-Hydroxy-3methylglutaryl CoA lyase deficiency. In: Atlas of Metabolic diseases. Chapman & Hall Medical, London. pp 253-258Google Scholar
  73. Bergman AJIW, van der Knaap MS, Smeitink JAM, Duran M et al. (1996) Magnetic resonance imaging and spectroscopy of the brain in propionic acidemia: clinical and biochemical considerations. Pediatr Res 4o: 404–409CrossRefGoogle Scholar
  74. Lehnert W, Sperl W, Suormala T, Baumgartner ER (1994) Propionic acidemia: clinical, biochemical and therapeutic aspects. Eur J Pediatr 153/Supp11: S68–S8oGoogle Scholar
  75. Massoud AF, Leonard JV (1993) Cardiomyopathy in propionic acidemia. Eur J Pediatr 152: 441-445Google Scholar
  76. North KN, Korson MS, Gopal YR, Rohr FJ et al. (1995) Neonatal-onset propionic acidemia: neurologic and developmental profiles, and implications for management. J Pediatr 126: 916–922Google Scholar
  77. Surtees RAH, Matthews EE, Leonard JV (1992) Neurolgical outcome of propionic acidemia. Pediatr Neurol 8: 333–337PubMedCrossRefGoogle Scholar
  78. Baumgartner ER, Viardot C et al. (1995) Long-term follow -up of 77 patients with isolated methylmalonic acidemia. J Inher Metab Dis 18: 138–142Google Scholar
  79. D`Angio CT, Dillon MJ, Leonard JV (1991) Renal tubular dysfunction in methylmalonic acidemia. Eur J Pediatr 150: 259–263Google Scholar
  80. Leonard JV (1995) The management and outcome of propionic and methylmalonic acidemia. J Inher Metab Dis 18: 430–434Google Scholar
  81. Rosenblatt DS, Shevell MI (1995) Inherited disorders of cobalamin and folate absorption and metabolism. In: Fernades J, Saudubray JM, Berghe G van den (eds) Inborn metabolic diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 247–258Google Scholar
  82. Ogier de Baulny H, Gerard M, Saudubray JM, Zittoun J (1998) Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr 157/Suppl 2: S77 - S83CrossRefGoogle Scholar
  83. Baumgartner R, Suormala T (1995) Biotin-responsive multiple carboxylase deficiency. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn metabolic diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 239–245Google Scholar
  84. Hoffmann GF (1994) Die Mevalonazidurie. Thieme, StuttgartGoogle Scholar
  85. Hamosh A, McDonald JW, Valle D, Francomano CA, Niedermeyer E, Johnston MV (1992) Dextromethorphan and high-dose benzoate therapy for nonketotic hyperglycinemia in an infant. J Pediatr 121: 131–135PubMedCrossRefGoogle Scholar
  86. Ohya Y, Ochi N, Mizutahi N, Hayakawa C, Watanabe K (1991) Nonketotic hyperglycinemia: treatment with NMDA antagonist and consideration of neuropathogenesis. Pediatr Neurol 7: 65–68PubMedCrossRefGoogle Scholar
  87. Tada K (1995) Nonketotic hyperglycinemia. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn Metabolic Diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 191–194Google Scholar
  88. Hoffmann GF, Athanassopoulos S, Burlina AB, Duran M et al. (1996) Clinical course, early diagnosis, treatment, and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27: 115–123PubMedCrossRefGoogle Scholar
  89. Fowler B (1997) Disorders of homocysteine metabolism. J Inher Metab Dis 20: 270–285PubMedCrossRefGoogle Scholar
  90. Miner SES, Evrovski J, Cole DEC (1997) Clinical chemistry and molecular biology of homocysteine metabolism: an update. Clin Biochem 30: 189–201PubMedCrossRefGoogle Scholar
  91. Van den Berg M, Boers GHJ (1996) Homocystinuria: what about mild hyperhomocysteinaemia? Postgrad Med J 72: 513–518PubMedCrossRefGoogle Scholar
  92. McInnes RR, Arshinoff SA, Bell L, Marliss EB, McCulloch JC (1981) Hyperornithinaemia and gyrate atrophy of the retina: improvement of vision during treatment with a low-arginine diet. Lancet 1: 513–516PubMedCrossRefGoogle Scholar
  93. Shih VE (1995) Ornithine. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn Metabolic Diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 183–190Google Scholar
  94. Fink JK, Brouwers P, Barton N et al. (1989) Neurologic complications in long-standing nephropathic cystinosis. Arch Neurol 46: 543–854PubMedCrossRefGoogle Scholar
  95. Gahl WA, Dalakas MC, Charnas L et al. (1988) Myopathy and cystine storage in muscles in a patient with nephropathic cystinosis. N Engl J Med 319: 1461–1464PubMedCrossRefGoogle Scholar
  96. Markello TC, Bernardini IM, Gahl WA (1993) Improved renal function in children with cystinosis treated with cysteamine. N Engl J Med 328: 1157–1162PubMedCrossRefGoogle Scholar
  97. Schneider JA, Clark KF, Greene AA et al. (1995) Recent advances in the treatment of cystinosis. J Inher Metab Dis 18: 387-397Google Scholar
  98. Town M, Jean G, Chergui S et al. (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18: 319–324Google Scholar
  99. Segal S, Thier SO (1995) Cystinuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 3581–3601Google Scholar
  100. Johnson JL, Wadman SK (1995) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 2271–2283Google Scholar
  101. Levy HL (1995) Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 3629–3642Google Scholar
  102. Bonnefont JP, Specola NB, Vassault A et al. (1990) The fasting test in pediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 150: 80–85PubMedCrossRefGoogle Scholar
  103. Fukao T, Yamaguchi S, Orli T, Hashimoto T (1995) Molecular basis of beta-ketothiolase deficiency: mutations and polymorphisms in the human mitochondrial acetoacetyl-coenzyme A thiolase gene. Hum Mutat 5: 113–120Google Scholar
  104. Nyhan WL, Ozand PT (1998) 3-Oxothiolase deficiency. In: Atlas of metabolic diseases, Chapman & Hill, London, pp 87-93Google Scholar
  105. Ozand PT, Rashed M, Gascon GG et al. (1994) 3-ketothiolase deficiency: a review and four new patients with neurological symptoms. Brain Dev 16 (Suppl): 38-45Google Scholar
  106. Saudubray JM, Specola N, Charpentier C (1995) Ketolysis defects. In: Fernandes J, Saudubray JM, van den Berghe G (eds) Inborn metabolic diseases, Springer, Heidelberg, pp 223–228Google Scholar
  107. APS (1997) Empfehlungen der Arbeitsgemeinschaft für Pädiatrische Stoffwechselstörungen zur Behandlung von Galaktosämie. Monatsschr Kinderheilk 9: 962–963Google Scholar
  108. Böhles H, Wenzel D, Shin YS (1986) Progressive cerebellar and extrapyramidal motor disturbances in galactosemic twins. Eur J Pediatr 145: 413–417Google Scholar
  109. Gitzelman R, Steinmann B (Hrsg) (1995) Galactosemia, Symposiumsbericht. Eur J Pediatr 154/2: 1–106Google Scholar
  110. Gitzelmann R (1996) Disorders of galactose metabolism. In: Fernandes J, Saudubray JM, Van den Berghe G (eds) Inborn metabolic diseases, diagnosis and treatment. Springer Verlag, Berlin Heidelberg New York Tokyo, pp 87–93Google Scholar
  111. Manis FR Cohn LB, McBride-Chang C et al. (1997) A longitudinal study of cognitive functioning in patients with classical galactosaemia, including a cohort treated with oral uridine. J Inher Metab Dis 20: 549–555Google Scholar
  112. Segal S, Berry GT (1995) Disorders of galactose metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease. Mac Graw-Hill, New York, pp 967–1000Google Scholar
  113. Schweitzer S, Shin Y, Jacobs C et al. (1993) Long-term outcome in 134 patients with galactosaemia. Eur J Pediatr 152: 36–43Google Scholar
  114. Wehrli SL, Berry T, Palmieri M et al. (1997) Urinary galactonate in patients with galactosemia: quantitation by nuclear magnetic resonance spectroscopy. Pediatr Res 42 /6: 855–861PubMedCrossRefGoogle Scholar
  115. Baerlocher K, Gitzelmann R, Steinmann B (1978) Hereditary fructose intolerance in early childhood: a major diagnostic challenge. Helv paediat Acta 33: 465–487PubMedGoogle Scholar
  116. Baerlocher K, Gitzelmann R, Steinmann B (1980) Clinical and genetic studies of disorders in fructose metabolism. In: Burman D et al. (eds) Inherited disorders of carbohydrate metabolism. MTP Press Limited, pp 163–187CrossRefGoogle Scholar
  117. Gitzelmann R, Steinmann B, Van den Berghe G (1995) Disorders of fructose metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 967–1000Google Scholar
  118. Bougnères P-F, Saudubray J-M, Marsac C, Bernard O, Odièvre M, Girard J (1981) Fasting hypoglycemia resulting from hepatic carnitine palmitoyl transferase deficiency. J Pediatr 98: 742–746Google Scholar
  119. DiMauro S, DiMauro PMM (1973) Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science 182: 929–931Google Scholar
  120. Douglass M, Turnbull DM, Bartlett K, Stevens DL, Alberti KGMM, Gibson GJ, Johnson MA, McCulloch AJ, Sheratt HSA (1984) Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid-storage myopathy and secondary carnitine deficiency. N Engl J Med 311: 1232–1236CrossRefGoogle Scholar
  121. Glasgow AM, Engel AG, Bier DM, Perry LW, Dickie M, Todaro J, Brown BI, Utter MF (1983) Hypoglycemia, hepatic deficiency and long-chain acylcarnitine excess responsive to medium chain triglyceride diet. Pediatr Res 17: 319–321PubMedCrossRefGoogle Scholar
  122. Hale DE, Batshaw ML, Coates PM, Frerman FE, Goodman SI, Singh I, Stanley CA (1985) Long-chain acyl-coenzyme A dehydrogenase deficiency: An inherited cause of nonketotic hypoglycemia. Pediatr Res 19: 666–671Google Scholar
  123. Hale DE, Thorpe C, Braat K, Wright JH, Roe CR, Coates PM, Hashimoto T, Glasgow AM (199o) The L-3-hydroxyacyl-CoA dehydrogenase deficiency. In: Tanaka K, Coates PM (eds): Fatty acid oxidation: Clinical, biochemical and molecular aspects. Alan R. Liss, New York, pp 503–508Google Scholar
  124. Kolvraa S, Gregersen N, Christensen E, Hobolth N (1982) In vitro fibroblast studies in a patient with C6–C10-dicarboxylic aciduria: Evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta 126: 53-57Google Scholar
  125. Stanley CA, Hale DE, Berry GT, DeLeeuw S, Boxer J, Bonnefont J-P (1992) A deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med 327: 19–23PubMedCrossRefGoogle Scholar
  126. Treem WR, Stanley CA, Finegold DN, Hale DE, Coates PM (1988) Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle and fibroblasts. N Engl J Med 319: 1331–1336PubMedCrossRefGoogle Scholar
  127. Brown GK, Otero LJ, LeGris M, Brown RM (1994) Pyruvate dehydrogenase deficiency. J Med Genet 31: 875-879Google Scholar
  128. De Meirleir L, Lissens W, Denis R et al. (1993) Pyruvate dehydrogenase deficiency: clinical and biochemical diagnosis. Pediatr Neurol 9: 216–220Google Scholar
  129. Munnich A (1995) The respiratory chain. In: Fernandes J, Saudubray JM, van den Berghe G (eds) Inborn metabolic diseases. Springer, Berlin Heidelberg New York Tokyo, pp 121–131Google Scholar
  130. Nishino I, Spinazzola A, Hirano M (1999) Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 253: 689–692Google Scholar
  131. Nyhan WL, Ozand PT (1998) The lactic acidemias. In: Atlas of metabolic diseases. Chapmann & Hall Medical, London, pp 259–320Google Scholar
  132. Robinson BH (1995) Lactic acidemia (disorders of pyruvate carboxylase, pyruvate dehydrogenase). In: Sciver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw-Hill, NewYork, pp 1479-1499Google Scholar
  133. Ruitenbeek W, Wendel U, Trijbels F, Sengers R (1996) Mitochondrial energy metabolism. In: Blau N, Duran M, Blaskovics ME (eds) Physician’s guide to the laboratory diagnosis of metabolic diseases. Chapmann & Hill Medical, London, pp 391–406Google Scholar
  134. Shoffner JM, Wallace DC (1995) Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw-Hill, New York, pp 1535-1609Google Scholar
  135. Smeitink, J, Heuvel L van den (1999) Human mitochondrial complex I in health and disease. Am J Hum Genet 64: 1505–1510Google Scholar
  136. Tiranti V, Hoertnagel K, Carozzo R et al. (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 63: 1609–1621PubMedCrossRefGoogle Scholar
  137. Zeviani M, Fernandez-Silva P, Tiranti V (1997) Disorders of mitochondria and related metabolism. Curr Opin Neurol 10: 160–167PubMedCrossRefGoogle Scholar
  138. Zeviani M, Tiranti V, Piantadosi C (1998) Mitochondrial disorders. Rev Molec Med 77: 59–72CrossRefGoogle Scholar
  139. Gärtner J, Braun A, Holzinger A, Roerig P, Lenard HG, Roscher AA (1998) Clinical and genetic aspects of X-linked adrenoleukodystrophy. Neuropediatrics 29: 3–13PubMedCrossRefGoogle Scholar
  140. Lazarow PB, Moser HW (1995) Disorders of peroxisomal biogenesis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, McGraw-Hill Information Services Company, New York, pp 2287–2324Google Scholar
  141. Moser HW, Smith KD, Moser AB (1995) X-linked adrenoleukodystrophy. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, McGraw-Hill Information Services Company, New York, pp 2325–2349Google Scholar
  142. Poggi-Travert F, Fournier B, Poll-The BT, Saudubray JM (1995) Clinical approach to inherited peroxisomal disorders. J Inherit Metab Dis 18/1: 1–18Google Scholar
  143. Powers JM, Moser HW (1998) Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol 8: 101–120PubMedCrossRefGoogle Scholar
  144. Berenson GS, Srinivasan SR, Bao W et al. (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Eng J Med 338: 1650–656CrossRefGoogle Scholar
  145. Goldstein JL, Brown MS (1973) Familial hypercholesterolemia: Identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A-reductase activity associated with overproduction of cholesterol. Proc Nat Acad Sci USA 70: 2804PubMedCrossRefGoogle Scholar
  146. Havel RJ, Kane JP (1995) Introduction: Structure and metabolism of plasma lipoproteins. In: Scriver CR et al., The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 1847–1848Google Scholar
  147. Lipid Research Clinics Coronary Primary Prevention Trial Results II (1984) The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251: 365CrossRefGoogle Scholar
  148. Mc Gill HL Jr, Mc Mahan CA, Malcolm GT, Dalmann MC, Strong JP (1997) Effects of serum lipoproteins and tracking on atherosclerosis in young men and women. Arterioscl Thromb Vasc Biol 17: 95–106CrossRefGoogle Scholar
  149. Müller C (1938) Xanthomata, Hypercholesterolemia, angina pectoris. Acta Med Scand 89: 75Google Scholar
  150. Newman WP, Freedman DS, Voos AW et al. (1986) Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis: The Bogalusa heart study. N Engl J Med 314: 138–144Google Scholar
  151. Widhalm K, Brazda G, Schneider et al. (1993) Effect of soy protein diet versus standard low fat, low cholesterol diet on lipid and lipoprotein levels in children with familial or polygenic hypercholesterolemia. J Pediatr 123: 30PubMedCrossRefGoogle Scholar
  152. Gennip AH van(1987) Screening for inborn errors of purine and pyrimidine metabolism by bidimensional TLC and HPLC. In: Zweig G, Sherma J, Krstulovic AM (eds) Handbook of Chromatography, Vol 1, Part A. CRC Press, Boca Raton, FI, pp 221–245Google Scholar
  153. Gennip AH van, Abeling NGGM, De Rorie D (1990) Application of TLC and HPTLC for the detection of aberrant purine and pyrimidine metabolism in man. In: Sherma J, Fried B (eds) Handbook of Thin-Layer Chromatography. Marcel Dekker, New York. Chromatographic Science Series 55: 863–906Google Scholar
  154. Gennip AH van, Busch S, Elzinga L, Stroomer AEM, Cruchten van A, Scholten EG, Abeling NGGM (1993) Application of simple chromatographic methods for the diagnosis of defects in pyrimidine degradation. Clin Chem 39/3: 380-385Google Scholar
  155. Gennip AH van, Abeling NGGM, Vreken P, Kuilenberg ABP van (1997a) Genetic Metabolic Disease of Pyrimidine Metabolism: Implications for Diagnosis and Treatment. Int Pediatr 12: 28–33Google Scholar
  156. Gennip AH van, Abeling NGGM, Vreken P, Kuilenberg ABP van (1997b) Inborn errors of pyrimidine degradation: Clinical, biochemical and molecular aspects. J Inher Metab Dis 20: 203–213Google Scholar
  157. Scriver CR, Beaudet AL, Sly WS, Valle D (eds) (1995) The metabolic and molecular basis of inherited disease. Various authors: Part 7, Purines and pyrimidines, vol. 2, 7th ed. McGraw-Hill, New York, pp 1655–1940Google Scholar
  158. Simmonds HA, Duley JA, Fairbanks LD, McBride MB (1997) When to investigate for purine and pyrimidine disorders. Introduction and review of clinical and laboratory indications. J Inher Metab Dis zo: 214–226Google Scholar
  159. Elder GH (1997) Hepatic porhyrias in children. J Inher Metab Dis zo: 237–246Google Scholar
  160. Jensen JD, Resnik SD (1995) Porphyrias in childhood. Semin Dermatol 14: 33-39Google Scholar
  161. Kappas A, Sassa S, Galbraith RA, Nordmann Y (1995) The Porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Valle D: The metabolic and molecular bases of inherited disease. Mc Graw-Hill, New York, pp 2103–2159Google Scholar
  162. Kostler E, Doss MO (1993) Die chronische hepatische Porphyrie. Ergeb Inn Med Kinderheilk 61: 123–205Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • K. Ullrich
  • J. Schaub
  • J. Spranger
  • A. Kohlschütter
  • C. Bachmann
  • E. Harms
  • U Wendel
  • K. Baerlocher
  • H. Böhles
  • J. Smeitink
  • J. Gärtner
  • A. Roscher
  • K. Widhalm
  • A. H. van Gennip

There are no affiliations available

Personalised recommendations