Skip to main content

Stoffwechselkrankheiten

  • Chapter
Pädiatrie

Zusammenfassung

Die verschiedenen Glykogenspeicherkrankheiten („glycogen storage disease“, GSD) sind Folge verminderter Aktivitäten unterschiedlicher Enzyme und Transportproteine des Glykogen- und Glukosestoffwechsels. Es kommt zur vermehrten zytoplasmatischen und/oder lysosomen Anreicherung normal oder abnormal strukturierter Glykogenmoleküle (Abb. 30.1). Da Lysosomen in allen Zellen nachweisbar sind, weisen Patienten mit lysosomaler Glykogenspeicherkrankheit (GSD II) immer generalisierte Speicherphänomene auf. Bei den übrigen ist die zytoplasmatische Glykogenspeicherung mit Ausnahme der GSD IV im wesentlichen auf Leber- und Muskelgewebe beschränkt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • DiMauro S, Servidei S, Tsujino S (1997) Disorders of carbohydrate metabolism: Glycogen storage diseases. In: Rosenberg RN, Prusiner SB, DiMauro S, Barchi R (eds) The Molecular and Genetic Bases of Neurological Disease. Butterworth-Heinemann, Boston, pp 1067–1097

    Google Scholar 

  • Moses SM (199oa) Muscle glycogenosis. J Inher Metab Dis, 13: 1–14

    Google Scholar 

  • Moses SM (199ob) Pathophysiology and dietary treatment of the glycogen storage diseases. J Pediatr Gastroenterol Nutrit n: 1–20

    Google Scholar 

  • Moses SM, Shin YS, Smit GPA, Ullrich K (eds) (1993) Glycogen storage disease I. Eur J Paediatr 152 /1

    Google Scholar 

  • Santer R, Schneppenheim R, Suter O, Schaub J, Steinmann B (1998) Fanconi-Bickel-Syndrom - The original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur J Pediatr 157: 783–797

    Google Scholar 

  • Smit GPA, Fernandes J, Leonard JV, Matthews EE, Moses SM, Odievre M, Ullrich K (1990) The long-term outcome of patients with glycogen storage disease. J Inher Metab Dis 13: 411–418

    Article  PubMed  CAS  Google Scholar 

  • Bax MCO, Colville GA (1995) Behaviour in mucopolysaccharide disorders. Arch Dis Childh 73: 77–81

    Article  PubMed  CAS  Google Scholar 

  • Clary MA, Wraith JE (1993) Management of mucopolysaccharidosis type III. Arch Dis Childh 69: 403-406

    Google Scholar 

  • Hopwood JJ, Morris CP (1990) The mucopolysaccharidoses. Mol Biol Med 7: 381–404

    PubMed  CAS  Google Scholar 

  • Fensom AH, Benson PF (1994) Recent advances in the prenatal diagnosis of the mucopolysaccharidoses. Prenat Diagn 14: 1–12

    Google Scholar 

  • Isbrandt D, Arlt G, Brooks DA et al. (1994) Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Am J Hum Genet 54: 454-463

    Google Scholar 

  • Northover H, Cowie RA, Wraitz JE (1996) Mucopolysaccharidosis type IVA (Morquio syndrome): a clinical review. J Inherit Metab Dis 19: 357–365

    Google Scholar 

  • Natowicz MR, Short MP, Wang Y, Dickersin GR, Gebhardt MC, Rosenthal DI, Sims K, Rosenberg AE (1996) Clinical and biochemical manifestations of hyaluronidase deficiency. New Engl J Med 335: 1029–1033

    Google Scholar 

  • Scott HS, Bunge S, Gal A et al. (1995) Molecular genetics of mucopolysaccharidosis type I. Hum Mutat 6: 228–302

    Google Scholar 

  • Walker, RWM, Darowski M, Morris P, Wraith JE (1994) Anaesthesia and mucopolysaccharidoses. Anaesthesia 49: 1078–1084

    Google Scholar 

  • Bax MCO, Colville GA (1995) Behaviour in mucopolysaccharide disorders. Arch Dis Childh 73: 77–81

    Google Scholar 

  • Abb. 31.4. Abbaudefekte der Oligosaccharidkette von Glykoproteinen. NeuAc N-Acetylneuraminsäure; Gal Galaktose; G1cNAc N-Acetylglukosamin; Man Mannose; Fuc= Fucose; ASN= Asparagin. ( Mod. nach Cantz u. Ullrich-Bott 1990 )

    Google Scholar 

  • Cantz M, Ulrich-Bott B (1990) Disorders of Glycoprotein Degradation. J Inher Metab Dis 13: 523–537

    Google Scholar 

  • Leroz, JG (1996) Oligosaccharidoses. In: Rimoin DL, Connor JM, Pyeritz RE (eds) Principles and Practice of Medical Genetics. Churchill Livingstone, New York, pp 2081–2013

    Google Scholar 

  • Thomas GH, Beaudet AL (1996) Disorders of Glycoprotein Degradation. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Basis of Inherited Disease. McGraw Hill, New York, pp 2563–2587

    Google Scholar 

  • Jaeken J, van Schaftingen E (1995) Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 377: 318–320

    Article  PubMed  Google Scholar 

  • Jaeken J, Stibler H, Hagberg B (1991) The carbohydrate-deficient glycoprotein syndrome. Acta Paediatr Scand Supp1379: 6–20

    Google Scholar 

  • Jaeken J, Schachter H, Carchon H, de Cock P, Coddeville B, Spik G (1994) Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localized N-acetylglucosaminyltransferase II. Arch Dis Child 71: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Körner Ch, Knauer R, Holzbach U, Hanefeld F, Lehle L, Figura von K (1998) Carbohydrate deficient glycoprotein syndrome type V: Deficiency of dolichyl-P-Glc: Man9GIcNAc2 PP-dolichyl glucosyltransferase. Proc Natl Acad Sci 95: 13200–13205

    Article  PubMed  Google Scholar 

  • Marquardt T, Brune T, Lühn K et al. (1999) Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J Pediatr 134: 681–688

    Google Scholar 

  • Niehues R, Hasilik M, Altern G et al. (1998) Carbohydrate-deficient glycoprotein syndrome Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 1o1: 1414–1420

    Google Scholar 

  • Stibler H, Westenberg B, Hanefeld F, Hagberg B (1993) Carbohydrate-deficient glycoprotein (CDG) syndrome–a new variant, type III. Neuropediatrics 24: 51–52

    Google Scholar 

  • Stibler H, Stephani U, Kutsch U (1995) Carbohydrate-deficient glycopro- tein syndrome - a fourth subtype. Neuropediatrics 26: 235–237

    Google Scholar 

  • Brett EM (1997) Paediatric Neurology. 3rd ed. Churchill Livingstone, New York

    Google Scholar 

  • Krivit W, Shapiro EG, Peters C et al. (1998) Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. New Engl J Med 338: 1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Menkes JH (1995) Textbook of Child Neurology. 5th ed. Williams and Wilkins, Baltimore

    Google Scholar 

  • Rosenberg RN, Prusiner SB, DiMauro S, Barchi RL (eds) (1997) The molecular and genetic basis of neurological disease. 2nd ed. Butterworth-Heinemannn, Boston

    Google Scholar 

  • Scriver CR, Beaudet AL, Sly WS, Valle D (eds) (1995) The metabolic and molecular basis of inherited disease. 7th ed. McGraw-Hill, New York

    Google Scholar 

  • Vanier MT (1997) Phenotypic and genetic heterogeneity in NiemannPick disease type C: current knowledge and practical implications. Wien Klin Wochenschr 109: 68–73

    PubMed  CAS  Google Scholar 

  • Bachmann C (1992) Ornithine carbamoyltransferase deficiency: findings, models and problems. J Inher Metab Dis 15: 578–591

    Google Scholar 

  • Bachmann C (1998) Satellite Meeting on Advances in Inherited Urea Cycle Disorders. Recent results–new questions. J Inher Metab Dis 21 /11: 1–5

    Article  CAS  Google Scholar 

  • Feillet F, Leonard JV (1998) Alternative pathway therapy for urea cycle disorders. J Inher Metab Dis 21 /1: 101–111

    Article  PubMed  CAS  Google Scholar 

  • Msall M, Batshaw ML, Suss R, Brusilow SW, Melits ED (1984) Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea cycle enzymopathies. N Engl J Med 31o: 1500–1505

    Google Scholar 

  • Summar ML (1998) Molecular genetic research into carbamoyl-phosphate synthase I: Molecular defect and linkage markers. J Inher Metab Dis 21 /1: 30–39

    Article  PubMed  CAS  Google Scholar 

  • Tuchman M, Morizono H, Rajagopal BS, Plante RJ, Allewel NM (1998) The biochemical and molecular spectrum of ornithine transcarbamylase deficiency. J Inher Metab Dis 21 /1: 40–58

    Article  PubMed  CAS  Google Scholar 

  • Uchino T, Endo F, Matsuda I (1998) Neurodevelopmental outcome of longterm therapy of urea cycle disorders in Japan. J Inher Metab Dis 21 /1: 151–159

    Article  PubMed  Google Scholar 

  • Aynsley-Green A,Soltesz G (1985) Hypoglycemia in Infancy and Childhood. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Cornblath M, Schwarz R (1994) Disorders of Carbohydrate Metabolism in Infancy, 3rd ed. Blackwell Scientific Publications, Oxford, UK Stanley CA (1997) Hyperinsulinism in Infants and Children. Pediatr ClinN AM 44: 363–374

    Google Scholar 

  • Williams AF (1997) Hypoglycaemia of the newborn: a review. WHO Bulletin OMS 75: 261–290

    CAS  Google Scholar 

  • Azen C, Koch R, Friedman E, Wenz E, Fishier K (1996) Summary of findings from the United States Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155/Suppl 1: S29 - S32

    Article  Google Scholar 

  • Burgard P, Rupp A, Konecki DS, Trefz FK, Schmidt H, Lichter Konecki U (1996a) Phenylalanine hydroxylase genotypes, predicted residual enzyme activity and phenotypic parameters of diagnosis and treatment of phenylketonuria. Eur J Pediatr 155/Suppl 1: S11 - S15

    Article  Google Scholar 

  • Burgard P, Schmidt E, Rupp A, Schneider W, Bremer HJ (1996b) Intellectual development of the patients of the German Collaborative Study of children treated for phenylketonuria. Eur J Pediatr 155/Suppl 1: S33 - S38

    Article  Google Scholar 

  • Burgard P, Rey F, Rupp A, Abadie V, Rey J (1997) Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: results of a cross-national and cross-sectional study. Pediatr Res 41: 368–374

    Google Scholar 

  • Güttler F, Guldberg P (1996) The influence of mutations on enzyme activity and phenylalanine tolerance in phenylalanine hydroxylase deficiency. Eur J Pediatr 155/Supp11: S6 - S10

    Google Scholar 

  • Koch R, Fishler K, Azen C, Guldberg P, Güttler F (1997) The relationship of genotype to phenotype in phenylalanine hydroxylase deficiency. Biochem Mol Med 6o: 92–101

    Article  Google Scholar 

  • Möller HE, Weglage J, Wiedermann D, Vermathen P, Bick U, Ullrich K (1997) Kinetics of phenylalanine transport at the human blood-brain barrier investigated in vivo. Brain Res 778: 329–337

    Google Scholar 

  • Przyrembel H (1996) Recommendations for protein and amino acid intake in phenylketonuria patients. Eur J Pediatr 1996 155/Suppl 1: S130 - S131

    Article  Google Scholar 

  • Schmidt E, Burgard P, Rupp A (1996) Effects of concurrent phenylalani-ne levels on sustained attention and calculation speed in patients treated early for phenylketonuria. Eur J Pediatr 155/Suppl 1: S82 - s86

    Article  Google Scholar 

  • Weglage J, Ullrich K, Pietsch M, Flinders B, Güttler F, Harms E (1997) Intellectual, neurologic, and neuropsychologic outcome in untreated subjects with nonphenylketonuric hyperphenylalaninemia. German Collaborative Study on Phenylketonuria. Pediatr Res 42: 378–384

    Google Scholar 

  • Hanley WB, Koch R, Levy HL, Matalon R, Rouse B, Azen C, Cruz F de la(1996) The North American Maternal Phenylketonuria Collaborative Study, developmental assessment of the offspring: preliminary report. Eur J Pediatr 155/Supp11: S169–S172

    Google Scholar 

  • Lenke RR, Levy HL (1980) Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 303: 1202–1208

    Google Scholar 

  • Levy HL, Waisbren SE, Lobbregt D et al. (1996) Maternal non-phenylketonuric mild hyperphenylalaninemia. Eur J Pediatr 155/Suppl 1: Szo-S25

    Google Scholar 

  • Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiencies. J Inher Metab Dis 19: 8–14

    Article  PubMed  CAS  Google Scholar 

  • Matalon R, Michals K, Blau N, Rouse B (1989) Hyperphenylalaninemia due to inherited deficiencies of tetrahydrobiopterin. Adv Pediatr 36: 67–89

    PubMed  CAS  Google Scholar 

  • Holme E, Lindstedt S (1995) Diagnosis and management of tyrosinemia type I. Curr Opin Pediatr 7: 726–732

    Google Scholar 

  • Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340 /8823: 813–817

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith LA, Kang E, Bienfang DC, Jimbow K, Gerald P, Baden HP (1973) Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr 83: 798–805

    Article  PubMed  CAS  Google Scholar 

  • Hervé F, Moreno JL, Ogier H et al. (1986) Kératite „inguérissable“ et hyperkératose palmo-plantaire chronique avec hypertyrosinémie. Guerison par un regime pauvre en tyrosine. Tyrosinémie de type II. Arch Fr Pediatr 43: 19–22

    Google Scholar 

  • O’Brien WM, La Du BN, Bunim JJ (1963) Biochemical, pathological and clinical aspects of alcaptonuria, ochronosis and ochronotic arthropathy. Am J Med 34: 813–838

    Article  Google Scholar 

  • Hazleman BL, Adebajo AO (1993) Alcaptonuria. In: Royce PM, Steinmann B (eds) Connective Tissue and Ist Heritable Disorders. Wiley-Liss, New York, pp 591–602

    Google Scholar 

  • Chuang DT, Shih VE (1995) Disorders of branched-chain amino acid and keto acid metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw-Hill, New York, pp 1239–1277

    Google Scholar 

  • Korein J, Sansaricq C, Kalmijn M, Honig J, Lange B (1994) Maple syrup urine disease: clinical, EEG, and plasma amino acid correlations with a theoretical mechanism of acute neurotoxicity. Intern J Neuroscience 79: 21–45

    Google Scholar 

  • Rashed MS, Ozand PT, Bucknall MP, Little D (1995) Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrosprary tandem mass spectrometry. Pediatr Res 28: 324–331

    Google Scholar 

  • Berry GT,Yudkoff M, Segal S (1988) Isovaleric acidemia: medical and neu- rodevelopmental effects of long-term therapy. J Pediatr 113: 58–64

    Google Scholar 

  • Fries MH, Rinaldo P, Schmidt-Sommerfeld E, Jurecki E, Packman S (1996) Isovaleric acidemia: response to a leucine load after three weeks of supplementation with glycine, L-carnitine, and combined glycine-carnitine therapy. J Pediatr 129: 449–452

    Google Scholar 

  • Gibson KM, Elpeleg ON, Jakobs C, Costeff H, Kelley RI (1993) Multiple syn- dromes of 3-methylglutaconic aciduria. Pediatr Neurol9: 120–123

    Google Scholar 

  • Nyhan WL, Ozand T (1998) 3-Hydroxy-3methylglutaryl CoA lyase deficiency. In: Atlas of Metabolic diseases. Chapman & Hall Medical, London. pp 253-258

    Google Scholar 

  • Bergman AJIW, van der Knaap MS, Smeitink JAM, Duran M et al. (1996) Magnetic resonance imaging and spectroscopy of the brain in propionic acidemia: clinical and biochemical considerations. Pediatr Res 4o: 404–409

    Article  Google Scholar 

  • Lehnert W, Sperl W, Suormala T, Baumgartner ER (1994) Propionic acidemia: clinical, biochemical and therapeutic aspects. Eur J Pediatr 153/Supp11: S68–S8o

    Google Scholar 

  • Massoud AF, Leonard JV (1993) Cardiomyopathy in propionic acidemia. Eur J Pediatr 152: 441-445

    Google Scholar 

  • North KN, Korson MS, Gopal YR, Rohr FJ et al. (1995) Neonatal-onset propionic acidemia: neurologic and developmental profiles, and implications for management. J Pediatr 126: 916–922

    Google Scholar 

  • Surtees RAH, Matthews EE, Leonard JV (1992) Neurolgical outcome of propionic acidemia. Pediatr Neurol 8: 333–337

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner ER, Viardot C et al. (1995) Long-term follow -up of 77 patients with isolated methylmalonic acidemia. J Inher Metab Dis 18: 138–142

    Google Scholar 

  • D`Angio CT, Dillon MJ, Leonard JV (1991) Renal tubular dysfunction in methylmalonic acidemia. Eur J Pediatr 150: 259–263

    Google Scholar 

  • Leonard JV (1995) The management and outcome of propionic and methylmalonic acidemia. J Inher Metab Dis 18: 430–434

    Google Scholar 

  • Rosenblatt DS, Shevell MI (1995) Inherited disorders of cobalamin and folate absorption and metabolism. In: Fernades J, Saudubray JM, Berghe G van den (eds) Inborn metabolic diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 247–258

    Google Scholar 

  • Ogier de Baulny H, Gerard M, Saudubray JM, Zittoun J (1998) Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr 157/Suppl 2: S77 - S83

    Article  Google Scholar 

  • Baumgartner R, Suormala T (1995) Biotin-responsive multiple carboxylase deficiency. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn metabolic diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 239–245

    Google Scholar 

  • Hoffmann GF (1994) Die Mevalonazidurie. Thieme, Stuttgart

    Google Scholar 

  • Hamosh A, McDonald JW, Valle D, Francomano CA, Niedermeyer E, Johnston MV (1992) Dextromethorphan and high-dose benzoate therapy for nonketotic hyperglycinemia in an infant. J Pediatr 121: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Ohya Y, Ochi N, Mizutahi N, Hayakawa C, Watanabe K (1991) Nonketotic hyperglycinemia: treatment with NMDA antagonist and consideration of neuropathogenesis. Pediatr Neurol 7: 65–68

    Article  PubMed  CAS  Google Scholar 

  • Tada K (1995) Nonketotic hyperglycinemia. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn Metabolic Diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 191–194

    Google Scholar 

  • Hoffmann GF, Athanassopoulos S, Burlina AB, Duran M et al. (1996) Clinical course, early diagnosis, treatment, and prevention of disease in glutaryl-CoA dehydrogenase deficiency. Neuropediatrics 27: 115–123

    Article  PubMed  CAS  Google Scholar 

  • Fowler B (1997) Disorders of homocysteine metabolism. J Inher Metab Dis 20: 270–285

    Article  PubMed  CAS  Google Scholar 

  • Miner SES, Evrovski J, Cole DEC (1997) Clinical chemistry and molecular biology of homocysteine metabolism: an update. Clin Biochem 30: 189–201

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg M, Boers GHJ (1996) Homocystinuria: what about mild hyperhomocysteinaemia? Postgrad Med J 72: 513–518

    Article  PubMed  Google Scholar 

  • McInnes RR, Arshinoff SA, Bell L, Marliss EB, McCulloch JC (1981) Hyperornithinaemia and gyrate atrophy of the retina: improvement of vision during treatment with a low-arginine diet. Lancet 1: 513–516

    Article  PubMed  CAS  Google Scholar 

  • Shih VE (1995) Ornithine. In: Fernandes J, Saudubray JM, Berghe G van den (eds) Inborn Metabolic Diseases, 2nd ed. Springer, Berlin Heidelberg New York, pp 183–190

    Google Scholar 

  • Fink JK, Brouwers P, Barton N et al. (1989) Neurologic complications in long-standing nephropathic cystinosis. Arch Neurol 46: 543–854

    Article  PubMed  CAS  Google Scholar 

  • Gahl WA, Dalakas MC, Charnas L et al. (1988) Myopathy and cystine storage in muscles in a patient with nephropathic cystinosis. N Engl J Med 319: 1461–1464

    Article  PubMed  CAS  Google Scholar 

  • Markello TC, Bernardini IM, Gahl WA (1993) Improved renal function in children with cystinosis treated with cysteamine. N Engl J Med 328: 1157–1162

    Article  PubMed  CAS  Google Scholar 

  • Schneider JA, Clark KF, Greene AA et al. (1995) Recent advances in the treatment of cystinosis. J Inher Metab Dis 18: 387-397

    Google Scholar 

  • Town M, Jean G, Chergui S et al. (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18: 319–324

    Google Scholar 

  • Segal S, Thier SO (1995) Cystinuria. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 3581–3601

    Google Scholar 

  • Johnson JL, Wadman SK (1995) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 2271–2283

    Google Scholar 

  • Levy HL (1995) Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 3629–3642

    Google Scholar 

  • Bonnefont JP, Specola NB, Vassault A et al. (1990) The fasting test in pediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 150: 80–85

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Yamaguchi S, Orli T, Hashimoto T (1995) Molecular basis of beta-ketothiolase deficiency: mutations and polymorphisms in the human mitochondrial acetoacetyl-coenzyme A thiolase gene. Hum Mutat 5: 113–120

    Google Scholar 

  • Nyhan WL, Ozand PT (1998) 3-Oxothiolase deficiency. In: Atlas of metabolic diseases, Chapman & Hill, London, pp 87-93

    Google Scholar 

  • Ozand PT, Rashed M, Gascon GG et al. (1994) 3-ketothiolase deficiency: a review and four new patients with neurological symptoms. Brain Dev 16 (Suppl): 38-45

    Google Scholar 

  • Saudubray JM, Specola N, Charpentier C (1995) Ketolysis defects. In: Fernandes J, Saudubray JM, van den Berghe G (eds) Inborn metabolic diseases, Springer, Heidelberg, pp 223–228

    Google Scholar 

  • APS (1997) Empfehlungen der Arbeitsgemeinschaft für Pädiatrische Stoffwechselstörungen zur Behandlung von Galaktosämie. Monatsschr Kinderheilk 9: 962–963

    Google Scholar 

  • Böhles H, Wenzel D, Shin YS (1986) Progressive cerebellar and extrapyramidal motor disturbances in galactosemic twins. Eur J Pediatr 145: 413–417

    Google Scholar 

  • Gitzelman R, Steinmann B (Hrsg) (1995) Galactosemia, Symposiumsbericht. Eur J Pediatr 154/2: 1–106

    Google Scholar 

  • Gitzelmann R (1996) Disorders of galactose metabolism. In: Fernandes J, Saudubray JM, Van den Berghe G (eds) Inborn metabolic diseases, diagnosis and treatment. Springer Verlag, Berlin Heidelberg New York Tokyo, pp 87–93

    Google Scholar 

  • Manis FR Cohn LB, McBride-Chang C et al. (1997) A longitudinal study of cognitive functioning in patients with classical galactosaemia, including a cohort treated with oral uridine. J Inher Metab Dis 20: 549–555

    Google Scholar 

  • Segal S, Berry GT (1995) Disorders of galactose metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease. Mac Graw-Hill, New York, pp 967–1000

    Google Scholar 

  • Schweitzer S, Shin Y, Jacobs C et al. (1993) Long-term outcome in 134 patients with galactosaemia. Eur J Pediatr 152: 36–43

    Google Scholar 

  • Wehrli SL, Berry T, Palmieri M et al. (1997) Urinary galactonate in patients with galactosemia: quantitation by nuclear magnetic resonance spectroscopy. Pediatr Res 42 /6: 855–861

    Article  PubMed  CAS  Google Scholar 

  • Baerlocher K, Gitzelmann R, Steinmann B (1978) Hereditary fructose intolerance in early childhood: a major diagnostic challenge. Helv paediat Acta 33: 465–487

    PubMed  CAS  Google Scholar 

  • Baerlocher K, Gitzelmann R, Steinmann B (1980) Clinical and genetic studies of disorders in fructose metabolism. In: Burman D et al. (eds) Inherited disorders of carbohydrate metabolism. MTP Press Limited, pp 163–187

    Chapter  Google Scholar 

  • Gitzelmann R, Steinmann B, Van den Berghe G (1995) Disorders of fructose metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 967–1000

    Google Scholar 

  • Bougnères P-F, Saudubray J-M, Marsac C, Bernard O, Odièvre M, Girard J (1981) Fasting hypoglycemia resulting from hepatic carnitine palmitoyl transferase deficiency. J Pediatr 98: 742–746

    Google Scholar 

  • DiMauro S, DiMauro PMM (1973) Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science 182: 929–931

    Google Scholar 

  • Douglass M, Turnbull DM, Bartlett K, Stevens DL, Alberti KGMM, Gibson GJ, Johnson MA, McCulloch AJ, Sheratt HSA (1984) Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid-storage myopathy and secondary carnitine deficiency. N Engl J Med 311: 1232–1236

    Article  Google Scholar 

  • Glasgow AM, Engel AG, Bier DM, Perry LW, Dickie M, Todaro J, Brown BI, Utter MF (1983) Hypoglycemia, hepatic deficiency and long-chain acylcarnitine excess responsive to medium chain triglyceride diet. Pediatr Res 17: 319–321

    Article  PubMed  CAS  Google Scholar 

  • Hale DE, Batshaw ML, Coates PM, Frerman FE, Goodman SI, Singh I, Stanley CA (1985) Long-chain acyl-coenzyme A dehydrogenase deficiency: An inherited cause of nonketotic hypoglycemia. Pediatr Res 19: 666–671

    Google Scholar 

  • Hale DE, Thorpe C, Braat K, Wright JH, Roe CR, Coates PM, Hashimoto T, Glasgow AM (199o) The L-3-hydroxyacyl-CoA dehydrogenase deficiency. In: Tanaka K, Coates PM (eds): Fatty acid oxidation: Clinical, biochemical and molecular aspects. Alan R. Liss, New York, pp 503–508

    Google Scholar 

  • Kolvraa S, Gregersen N, Christensen E, Hobolth N (1982) In vitro fibroblast studies in a patient with C6–C10-dicarboxylic aciduria: Evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta 126: 53-57

    Google Scholar 

  • Stanley CA, Hale DE, Berry GT, DeLeeuw S, Boxer J, Bonnefont J-P (1992) A deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med 327: 19–23

    Article  PubMed  CAS  Google Scholar 

  • Treem WR, Stanley CA, Finegold DN, Hale DE, Coates PM (1988) Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle and fibroblasts. N Engl J Med 319: 1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Brown GK, Otero LJ, LeGris M, Brown RM (1994) Pyruvate dehydrogenase deficiency. J Med Genet 31: 875-879

    Google Scholar 

  • De Meirleir L, Lissens W, Denis R et al. (1993) Pyruvate dehydrogenase deficiency: clinical and biochemical diagnosis. Pediatr Neurol 9: 216–220

    Google Scholar 

  • Munnich A (1995) The respiratory chain. In: Fernandes J, Saudubray JM, van den Berghe G (eds) Inborn metabolic diseases. Springer, Berlin Heidelberg New York Tokyo, pp 121–131

    Google Scholar 

  • Nishino I, Spinazzola A, Hirano M (1999) Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 253: 689–692

    Google Scholar 

  • Nyhan WL, Ozand PT (1998) The lactic acidemias. In: Atlas of metabolic diseases. Chapmann & Hall Medical, London, pp 259–320

    Google Scholar 

  • Robinson BH (1995) Lactic acidemia (disorders of pyruvate carboxylase, pyruvate dehydrogenase). In: Sciver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw-Hill, NewYork, pp 1479-1499

    Google Scholar 

  • Ruitenbeek W, Wendel U, Trijbels F, Sengers R (1996) Mitochondrial energy metabolism. In: Blau N, Duran M, Blaskovics ME (eds) Physician’s guide to the laboratory diagnosis of metabolic diseases. Chapmann & Hill Medical, London, pp 391–406

    Google Scholar 

  • Shoffner JM, Wallace DC (1995) Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 7th ed. McGraw-Hill, New York, pp 1535-1609

    Google Scholar 

  • Smeitink, J, Heuvel L van den (1999) Human mitochondrial complex I in health and disease. Am J Hum Genet 64: 1505–1510

    Google Scholar 

  • Tiranti V, Hoertnagel K, Carozzo R et al. (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 63: 1609–1621

    Article  PubMed  CAS  Google Scholar 

  • Zeviani M, Fernandez-Silva P, Tiranti V (1997) Disorders of mitochondria and related metabolism. Curr Opin Neurol 10: 160–167

    Article  PubMed  CAS  Google Scholar 

  • Zeviani M, Tiranti V, Piantadosi C (1998) Mitochondrial disorders. Rev Molec Med 77: 59–72

    Article  CAS  Google Scholar 

  • Gärtner J, Braun A, Holzinger A, Roerig P, Lenard HG, Roscher AA (1998) Clinical and genetic aspects of X-linked adrenoleukodystrophy. Neuropediatrics 29: 3–13

    Article  PubMed  Google Scholar 

  • Lazarow PB, Moser HW (1995) Disorders of peroxisomal biogenesis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, McGraw-Hill Information Services Company, New York, pp 2287–2324

    Google Scholar 

  • Moser HW, Smith KD, Moser AB (1995) X-linked adrenoleukodystrophy. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, McGraw-Hill Information Services Company, New York, pp 2325–2349

    Google Scholar 

  • Poggi-Travert F, Fournier B, Poll-The BT, Saudubray JM (1995) Clinical approach to inherited peroxisomal disorders. J Inherit Metab Dis 18/1: 1–18

    Google Scholar 

  • Powers JM, Moser HW (1998) Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol 8: 101–120

    Article  PubMed  CAS  Google Scholar 

  • Berenson GS, Srinivasan SR, Bao W et al. (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Eng J Med 338: 1650–656

    Article  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1973) Familial hypercholesterolemia: Identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A-reductase activity associated with overproduction of cholesterol. Proc Nat Acad Sci USA 70: 2804

    Article  PubMed  CAS  Google Scholar 

  • Havel RJ, Kane JP (1995) Introduction: Structure and metabolism of plasma lipoproteins. In: Scriver CR et al., The metabolic and molecular bases of inherited disease, 7th ed. McGraw Hill, New York, pp 1847–1848

    Google Scholar 

  • Lipid Research Clinics Coronary Primary Prevention Trial Results II (1984) The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251: 365

    Article  Google Scholar 

  • Mc Gill HL Jr, Mc Mahan CA, Malcolm GT, Dalmann MC, Strong JP (1997) Effects of serum lipoproteins and tracking on atherosclerosis in young men and women. Arterioscl Thromb Vasc Biol 17: 95–106

    Article  Google Scholar 

  • Müller C (1938) Xanthomata, Hypercholesterolemia, angina pectoris. Acta Med Scand 89: 75

    Google Scholar 

  • Newman WP, Freedman DS, Voos AW et al. (1986) Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis: The Bogalusa heart study. N Engl J Med 314: 138–144

    Google Scholar 

  • Widhalm K, Brazda G, Schneider et al. (1993) Effect of soy protein diet versus standard low fat, low cholesterol diet on lipid and lipoprotein levels in children with familial or polygenic hypercholesterolemia. J Pediatr 123: 30

    Article  PubMed  CAS  Google Scholar 

  • Gennip AH van(1987) Screening for inborn errors of purine and pyrimidine metabolism by bidimensional TLC and HPLC. In: Zweig G, Sherma J, Krstulovic AM (eds) Handbook of Chromatography, Vol 1, Part A. CRC Press, Boca Raton, FI, pp 221–245

    Google Scholar 

  • Gennip AH van, Abeling NGGM, De Rorie D (1990) Application of TLC and HPTLC for the detection of aberrant purine and pyrimidine metabolism in man. In: Sherma J, Fried B (eds) Handbook of Thin-Layer Chromatography. Marcel Dekker, New York. Chromatographic Science Series 55: 863–906

    Google Scholar 

  • Gennip AH van, Busch S, Elzinga L, Stroomer AEM, Cruchten van A, Scholten EG, Abeling NGGM (1993) Application of simple chromatographic methods for the diagnosis of defects in pyrimidine degradation. Clin Chem 39/3: 380-385

    Google Scholar 

  • Gennip AH van, Abeling NGGM, Vreken P, Kuilenberg ABP van (1997a) Genetic Metabolic Disease of Pyrimidine Metabolism: Implications for Diagnosis and Treatment. Int Pediatr 12: 28–33

    Google Scholar 

  • Gennip AH van, Abeling NGGM, Vreken P, Kuilenberg ABP van (1997b) Inborn errors of pyrimidine degradation: Clinical, biochemical and molecular aspects. J Inher Metab Dis 20: 203–213

    Google Scholar 

  • Scriver CR, Beaudet AL, Sly WS, Valle D (eds) (1995) The metabolic and molecular basis of inherited disease. Various authors: Part 7, Purines and pyrimidines, vol. 2, 7th ed. McGraw-Hill, New York, pp 1655–1940

    Google Scholar 

  • Simmonds HA, Duley JA, Fairbanks LD, McBride MB (1997) When to investigate for purine and pyrimidine disorders. Introduction and review of clinical and laboratory indications. J Inher Metab Dis zo: 214–226

    Google Scholar 

  • Elder GH (1997) Hepatic porhyrias in children. J Inher Metab Dis zo: 237–246

    Google Scholar 

  • Jensen JD, Resnik SD (1995) Porphyrias in childhood. Semin Dermatol 14: 33-39

    Google Scholar 

  • Kappas A, Sassa S, Galbraith RA, Nordmann Y (1995) The Porphyrias. In: Scriver CR, Beaudet AL, Sly WS, Valle D: The metabolic and molecular bases of inherited disease. Mc Graw-Hill, New York, pp 2103–2159

    Google Scholar 

  • Kostler E, Doss MO (1993) Die chronische hepatische Porphyrie. Ergeb Inn Med Kinderheilk 61: 123–205

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ullrich, K. et al. (2001). Stoffwechselkrankheiten. In: Lentze, M.J., Schaub, J., Schulte, F.J., Spranger, J. (eds) Pädiatrie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12660-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12660-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12661-5

  • Online ISBN: 978-3-662-12660-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics