Skip to main content

Erosion, Sedimentation and Sedimentary Origin of Clays

  • Chapter
Book cover Origin and Mineralogy of Clays

Abstract

Of all the various types of sediment, fine-grained sediments with a high proportion of clay minerals are by far the most abundant. In the marine environment, terrigenous (land-derived) muds cover about 60% of the continental shelves, and almost 40% of the deep ocean basins, amounting in total to about a third of the Earth’s surface (Fig. 4.1). Similarly, although proportionally much smaller in area, continental aquatic environments are often dominated by fine-grained sediments, and these environments include many of the rivers, lakes, deltas and estuaries used extensively by man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Algan O, Clayton T, Tranter M, Collins MB (1994) Estuarine mixing of clay minerals in the Solent region, southern England. Sediment Geol 92: 241–255

    Google Scholar 

  • Allison MA, Riggs SR (1994) Clay-mineral suites in cyclic Miocene sediments: a model from deposition in a mixed silicicalstic-phosphatic-dolomitic-biogenic system. J Sediment Petrol A64: 386–395

    Google Scholar 

  • Arnold PW (1978) Surface-electrolyte interactions. In: Greenland DJ, Hayes MHB (eds) The chemistry of soil constituents. John Wiley, New York, pp 355–404

    Google Scholar 

  • Avoine J (1987) Sediment exchanges between the Seine estuary and its adjacent shelf. J Geol Soc Lond 144: 135–148

    Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Menthuen, London, 265 pp Bailey SW (1988) Odinite: a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral. Clay Min 23: 237–247

    Google Scholar 

  • Baker RA (1980) Contaminants and sediments vols 1, 2. Ann Arbor Science Publishers, Ann Arbor

    Google Scholar 

  • Barnes PW, Reimnitz E, Fox D (1982) Ice rafting of fine-grained sediment, a sorting and transport mechanism, Beaufort Sea, Alaska. J Sediment Petrol 52: 493–502

    Google Scholar 

  • Bentor YK (1980) Phosphorites-the unsolved problems. In: Bentor YK (ed) Marine phosphorites-geochemistry, occurrence, genesis. SEPM Spec Publ 29, Tulsa, DK, pp 3–18

    Google Scholar 

  • Berger WH (1974) Deep-sea sedimentation. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, Berlin Heidelberg New York, pp 213–241

    Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76: 803–831

    Google Scholar 

  • Biscaye PE, Eittreim SL (1977) Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic ocean. Mar Geol 23: 155–172

    Google Scholar 

  • Blatt H, Middleton GV, Murray RC (1980) Origin of sedimentary rocks. Prentice Hallm Englewood Cliffs

    Google Scholar 

  • Callen RA (1984) Clays of the palygorskite-sepiolite group. Depositional environment, age and distribution. In: Singer A, Galan E (eds) Palygorskite-sepiolite, occurrence, genesis and uses. Developments in Sedimentology 37, Elsevier, Amsterdam pp 1–37

    Google Scholar 

  • Catt JA (1988) Loess-its formation transport and economic significance. In: Lerman A, Meybeck M (eds) NATO ASI Series C. Mathematical and physical sciences. V251, Kluwer, Dordrecht, pp 113–142

    Google Scholar 

  • Chamley H (1971) Recherches sur la sédimentation argileuse en Méditerranée. Sei Géol Strasbourg Mém 35, 225 pp

    Google Scholar 

  • Chamley H (1979) North Atlantic clay sedimentation and paleoenvironment since the late Jurassic. In: Talwani M, Hay W, Ryan WBF (eds) Deep drilling results in the Atlantic Ocean.

    Google Scholar 

  • Continental margins and paleoenvironment. Maurice Ewing Series, vol 3. American Geophysical Union, Washington, DC, pp 342–361

    Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer, Berlin. Heidelberg New York, 623 pp

    Google Scholar 

  • Chamley H (1993) La sédimentation marine des minéraux argileux. In: Paquet H, Clauer N (eds) Sédimentologie et géochimie de la surface. Colloque: la mémoire de George Millot. Les colloques de 1’ Académie des Science et du Cadas. Institut de France, Paris, pp 217–241

    Google Scholar 

  • Chennaux G, Esquevin J, Jourdan A, Latouche C, Maillet N (1985) X-ray mineralogy and minerai geochemistry of Cenozoic strata (Leg 80) and pétrographie study of associated pebbles. DSDP Leg 80. Initial reports of the Deep Sea Drilling Project 80. US Government Printing Office, Washington, pp 1019–1046

    Google Scholar 

  • Cheshire MV, Shand C (1991) Translocation and plant availability of radio caesium in an organic soil. Plant Soil 134: 287–296

    Google Scholar 

  • Coote DR, Dumanski J, Ramsey JF (1981) An assessment of the degradation of agricultural lands in Canada. Agricultural Land Resource Institute, Contribution 118

    Google Scholar 

  • Curtis CD (1990) Aspects of the climatic influence on the clay mineralogy and geochemistry of soils, palaeosoils, and clastic sedimentary rocks. J Geol Soc Lond 147: 351–357

    Google Scholar 

  • Darragi F, Tardy Y (1987) Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes. Chem Geol 63: 59–72

    Google Scholar 

  • Davies TA, Gorsline DS (1976) Oceanic sediments and sedimentary processes. In: Riley JP, Chester R (eds) Chemical oceanography, vol 5, 2nd edn. Academic Press, London, pp 1–80

    Google Scholar 

  • Debrabant P, Chamley H, Foulon J, Maillot H (1979) Mineralogy and geochemistry of upper Cretaceous and Cenozoic sediments from the North Biscay Bay and Rockall Plateau (eastern North Atlantic), DSDP Leg 48. Initial reports of the Deep Sea Drilling Project 48. US Government Printing Office, Washington, pp 703–725

    Google Scholar 

  • Deconinck JF, Strasser A, Debrabant P (1988) Formation of illitic minerals at surface temperatures in Purbeckian sediments ( Lower Berriasian, Swiss and French Jura). Clay Min 23: 91–103

    Google Scholar 

  • Droste JB (1961) Clay minerals in the play a sediments of the Mojave desert, California. Special report 69, California Division of Mines. Ferry Building, San Francisco

    Google Scholar 

  • Dyni JR (1976) Trioctahedral smectite in the Green River Formation, Duchesne County, Utah. US Geol Surv Prof Pap 967: 14

    Google Scholar 

  • Eberl DD (1984) Clay mineral formation and transformation in rocks and soils. Philos Trans R Soc Lond A 311: 241–257

    Google Scholar 

  • Eberl DD, Jones BF, Khoury HN (1982) Mixed-layer kerolite/stevensite from the Amargosa desert, Nevada. Clays Clay Min 30: 321–326

    Google Scholar 

  • Eberl DD, Srodon J, Northrop HR (1986) Potassium fixation in smectite by wetting and drying. In: Davies JA, Hayes KF (eds) Geochemical processes at mineral surfaces. ACS Symp Ser 323/14: 296–326

    Google Scholar 

  • Edwards M (1986) Glacial environments. In: Reading HG (ed) Sedimentary environments and facies. 2nd edn. Blackwell, Oxford, pp 445–470

    Google Scholar 

  • Ehrmann WU, Melles M, Kuhn G, Grobe H (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Mar Geol 107: 249–273 Eisma D (1986)

    Google Scholar 

  • Flocculation and deflocculation of suspended matter in estuaries. Neth J Sea Res 20: 183–199

    Google Scholar 

  • Fagel N, Debrabant P, de Menocal P, Demoulin B (1992) Utilisation des minéraux sédimentaires argileux pour la reconstitution des variations paléoclimatiques a court terme en Mer d’Arabie. Oceanol Acta 15: 125–136

    Google Scholar 

  • Faugeres J-C, Stow DAV (1993) Bottom-current-controlled sedimentation: a synthesis of the contourite problem. Sediment Geol 82: 287–297

    Google Scholar 

  • Förstner U, Ahlf W, Calmano W, Kersten M (1990) Sediment criteria development. Contributions from environmental geochemistry to water quality management. In: Heling D, Rothe P, Förstner U, Stoffers P (eds) Sediments and environmental geochemistry: selected aspects and case histories. Springer, Berlin Heidelberg, New York, pp 311–338

    Google Scholar 

  • Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol Oceanogr 33: 649–668

    Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. WW Norton, New York, 397 pp

    Google Scholar 

  • Gibbs RJ (1967) The geochemistry of the Amazon River system. Part I. The factors which control the salinity and the composition and concentration of the suspended solids. Geol Soc Am Bull 78: 1203–1232

    Google Scholar 

  • Gibbs RJ (1977) Clay mineral segregation in the marine environment. J Sediment Petrol 47: 237–243

    Google Scholar 

  • Gibbs RJ (1983) Coagulation rates of clay minerals and natural sediments. J Sediment Petrol 53: 1193–1203

    Google Scholar 

  • Glasby GP (1991) Mineralogy geochemistry and origin of Pacific red clays: a review. N Z J Geol Geophys 34: 167–176

    Google Scholar 

  • Goldschmidt PM, Pfirman SL, Wollenburg I, Henrich R (1992) Origin of sediment pellets from the Arctic seafloor: sea ice or icebergs? Deep Sea Res 39: 539–565

    Google Scholar 

  • Gorsline DS (1984) A review of fine-grained sediment origins, characteristics, transport and deposition. In: Stow DAV, Piper DJW (eds) Fine grained sediments: deepwater processes and facies.

    Google Scholar 

  • Geological Society Special Publication No 15, London Goudie AS (1983) Dust storms in space and time. Prog Phys Geog 7: 502–529

    Google Scholar 

  • Griffin JJ, Windom H, Goldberg ED (1968) The distribution of clay minerals in the world ocean. Deep Sea Res 15: 433–459

    Google Scholar 

  • Grim RE (1968) Clay mineralogy, 2nd edn. McGraw-Hill, New York, 596 pp

    Google Scholar 

  • Hahn HH, Stumm W (1970) The role of coagulation in natural waters. Am J Sci 268: 354–368

    Google Scholar 

  • Hathaway JC (1972) Regional clay mineral facies in the estuaries and continental margin of the United States east coast. In: Nelson BW (ed) Environmental framework of coastal-plain estuaries. Geol Soc Am Mem 133: 293–316

    Google Scholar 

  • Helios Rybicka E (1992) Heavy metal partitioning in polluted river and sea sediments: clay

    Google Scholar 

  • mineral effects. Miner Petrogr Acta 25-A: 297–305

    Google Scholar 

  • Hillier S (1993) Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays Clay Min 41: 240–259

    Google Scholar 

  • Hillier S (1994) Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM, and XRD data, and implications for their origin. Clay Min 29: 665–679

    Google Scholar 

  • Irion G, Wunderlich F, Scheidhelm E (1987) Transport of clay minerals and anthropogenic compounds into the German Bight and the provenance of fine grained sediments SE of Helgoland. J Geol Soc Lond 144: 153–160

    Google Scholar 

  • Jannson MB (1988) A global survey of sediment yield. Geogr Ann 70: 81–98

    Google Scholar 

  • Jeans CV, Mitchell JG, Scherer M, Fischer MJ (1994) Origin of the Permo-Triassic clay mica assemblage. Clay Min 29: 575–589

    Google Scholar 

  • Jones BF (1986) Clay mineral diagenesis in lacustrine sediments. In: Mumpton FA (ed) Studies in diagenesis. US Geol Surv Bull 1578: 291–300

    Google Scholar 

  • Jones BF, Galan E (1988) Sepiolite and palygorskite. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Reviews in mineralogy, 19. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Jones BF, Weir AH (1983) Clay minerals of Lake Abert, an alkaline saline lake. Clays Clay Min 31: 161–172

    Google Scholar 

  • Karlsson W, Vollset J, Bj0rlykke, J0rgensen P (1978) Changes in mineralogical composition of Tertiary sediments from the North Sea. In: Mortland MM, Farmer VC (eds) International Clay Conference 1978. Developments in sedimentology 27. Elsevier, Amsterdam, pp 281–289

    Google Scholar 

  • Kennedy VC (1965) Mineralogy and cation exchange capacity of sediments from selected streams. US Geol Surv Prof Pap 443-D

    Google Scholar 

  • Kirby R (1987) Sediment exchanges across the coastal margins of NW Europe. J Geol Soc Lond 144: 121–126

    Google Scholar 

  • Kolla V, Kostecki JA, Robinson F, Biscaye PE, Ray PK (1981) Distribution and origins of clay minerals and quartz in surface sediments of the Arabian Sea. J Sediment Petrol 51: 563–569

    Google Scholar 

  • Kuhlemann J, Lange H, Paetsch (1993) Implications of a connection between clay mineral variations and coarse grained debris and lithology in the central Norwegian-Greenland Sea. Mar Geol 114: 1–11

    Google Scholar 

  • Kühnel RA (1992) Clays and clay minerals in environmental research. Miner Petrogr Acta 25:1-11

    Google Scholar 

  • Lemoalle J, Dupont B (1973) Iron bearing oolites and the present conditions of iron sedimentation in Lake Chad (Africa). In: Amstutz G, Bernard AJ (eds) Ores in sediments. Springer, Berlin Heidelberg New York, pp 167–178

    Google Scholar 

  • Lerman A (1979) Geochemical processes water and sediment environments. John Wiley, New York, 481 pp

    Google Scholar 

  • Malle K-G (1990) The pollution of the river Rhine with heavy metals. In: Heling D, Rothe P, Förstner U, Stoffers P (eds) Sediments and environmental geochemistry; selected aspects and case histories. Springer, Berlin Heidelberg New York, pp 279–290

    Google Scholar 

  • Martin de Vidales JL, Pozo M, Alia JM, Garcia-Navarro F, Rull F (1991) Kerolite-stevensite mixed-layers from the Madrid Basin, central Spain. Clay Min 26: 329–342

    Google Scholar 

  • McCarthy JF, Degueldre C (1993) Sampling and characterisation of colloids and particles in groundwater for studying their role in contaminant transport. In: Buffle J, van Leeuwen HP (eds) Environmental particles, vol 2. IUPAC, Lewis, Boca Raton McCave IN (1972) Transport and escape of fine-grained sediment from shelf areas. In: Swift DJP, Duane DB, Pilkey OH (eds) Shelf sediment transport. Dowden, Hutchinson and Ross, Stroudsboug, pp 225–248

    Google Scholar 

  • McCave IN (1984) Erosion transport and deposition of fine grained marine sediments. In: Stow DAV, Piper DJW (eds) Fine-grained sediments deep water processes and facies. Geol Soc Lond Spec Publ 15: 69

    Google Scholar 

  • McCave IN (1985) Recent shelf clastic sediments. In: Brenchly PJ, Williams BPJ (eds) Sedimentology: recent developments and applied aspects. Blackwell, Oxford, pp 49–65

    Google Scholar 

  • McCave IN (1986) Local and global aspects of the bottom nepheloid layers in the world ocean. Neth J Sea Res 20: 167–181

    Google Scholar 

  • McMurtry GM, Wang CH, Yeh HW (1983) Chemical and isotopic investigations into the origin of clay minerals from the Galapagos hydrothermal mounds field. Geochim Cosmochim Acta 47: 475–489

    Google Scholar 

  • Meade RH (1972) Transport and deposition of sediments in estuaries. Geol Soc Am Mem 133: 91–120

    Google Scholar 

  • Meade RH (1988) Movement and storage of sediment in river systems. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. NATO ASI series C. Mathematical and physical sciences, vol 251, Kluwer, Dordrecht, pp 165–180

    Google Scholar 

  • Meade RH, Parker RS (1985) Sediment in rivers of the United States. US Geol Surv Water Supply Pap 2275: 49–60

    Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sei 287: 401–428

    Google Scholar 

  • Milliman JD, Meade RH (1983) World wide delivery of river sediments to the oceans. J Geol 91: 1–21

    Google Scholar 

  • Millot G. (1970) The geology of clays. Masson, Paris.

    Google Scholar 

  • Millot (1978) Clay genesis. In: Fairbridge RH, Bourgeois J (eds) The encyclopedia of sedimentology, vol 6. Dowden, Hutchinson and Ross, Stroudsburg, pp 152–155

    Google Scholar 

  • Müller G, Förstner U (1973) Recent iron ore formation in Lake Malawi Africa. Miner Depos 8: 278–290

    Google Scholar 

  • Nickling WG (1994) Aeolian sediment transport and deposition. In: Pye K (ed) Sediment transport and depositional processes. Blackwell, Oxford, pp 293–350

    Google Scholar 

  • Norrish K, Pickering JG (1983) Clay minerals. In: Soils–an Australian viewpoint. Division of Soils CSIRO, Australia, pp 281–308

    Google Scholar 

  • Nürnberg D, Wollenberg I, Dethle D, Eicken H, Kassens H, Letzig T, Reimnitz E, Thiede J (1994) Sediments in Arctic sea ice: implications for entrainment, transport and release. Mar Geol 119: 185–214

    Google Scholar 

  • Odin GS (ed) (1988) Green marine clays. Developments in sedimentology, vol 45. Elsevier, Amsterdam, 445 pp

    Google Scholar 

  • Odin GS (1990) Clay mineral formation at the continent ocean boundary: the verdine facies. Clay Min 25: 477–483

    Google Scholar 

  • Odin GS, Matter A (1981) De glauconarium origine. Sedimentology 28: 611–641

    Google Scholar 

  • Odom IE (1984) Glauconite and celadonite minerals. In: Bailey SW (ed) Micas. Reviews in mineralogy 13. Mineralogical Society of America, Washington, DC, pp 545–571

    Google Scholar 

  • Oglesby RT, Bouldin DR (1984) Phosphorous in the environment. In: Nriagu JO, Moore PB (eds )

    Google Scholar 

  • Phosphate minerals. Springer, Berlin Heidelberg New York, pp 400–423 O’Melia CR, Tiller CL (1993) Physicochemical aggregation and deposition in aquatic environments. In: Buffle J, van Leeuwen HP (eds) Environmental particles. Environmental analytical and physical chemistry series, vol 2, IUPAC. Lewis, Boca Raton, pp 353–386

    Google Scholar 

  • Peaver DR (1972) Sources of nearshore marine clays, southeastern United States. In: Nelson BW (ed) Environmental framework of coastal-plain estuaries. Geol Soc Am Mem 133: 317–335

    Google Scholar 

  • Péwé TL (1981) Desert dust: an overview. Geol Soc Am Spec Pap 186: 1–10

    Google Scholar 

  • Porrenga DH (1967) Clay mineralogy and geochemistry of recent marine sediments in tropical areas. Publ Fysisch-Geographisch Lab Univ Dort Stolk Amsterdam, 9, 145 pp

    Google Scholar 

  • Porrenga DH (1968) Non-marine glauconitic illite in the lower Oligocene of Aardebrug, Belgium. Clay Min 7: 421–430

    Google Scholar 

  • Potter PE, Maynard JB, Pryor WA (1980) Sedimentology of shale: study guide and reference source. Springer, Berlin Heidelberg New York Prospero JM (1981) Eolian transport to the world ocean, Chap 21. In: Emiliani C (ed) The sea, vol 7. Academic Press, New York, pp 801–874

    Google Scholar 

  • Pye K (1987) Aeolian dust and dust deposits. Academic Press, London, 334 pp

    Google Scholar 

  • Rateev MA, Gorbunova ZN, Lisitzyn AP, Nosov GL (1969) The distribution of clay minerals in the oceans. Sedimentology 13: 21–43

    Google Scholar 

  • Reid I, Frostick LE (1994) Fluvial sediment transport and deposition. In: Pye K (ed) Sediment transport and depositional processes. Blackwell, Oxford, pp 89–155

    Google Scholar 

  • Robert C (1982) Modalité de la sédimentation argileuse en relation avec l’histoire géologique de

    Google Scholar 

  • l’Atlantic Sud. Thesis, Univ Aix-Marseille II, 141 pp Sayles FL, Manngiesdorf PC Jr (1977) The equilibration of clay minerals with seawater: exchange reactions. Geochim Cosmochim Acta 41: 951–960

    Google Scholar 

  • Schindler PW (1991) The regulation of heavy metal concentration in natural aquatic systems. In: Vernet J-P (ed) Heavy metals in the environment. Elsevier, Amsterdam, pp 95–124

    Google Scholar 

  • Selby MJ (1994) Hillslope sediment transport and deposition. In: Pye K (ed) Sediment transport and depositional processes. Blackwell, London, pp 61–87

    Google Scholar 

  • Shand CA, Cheshire MV, Smith S, Vidal M, Rauret G (1994) Distribution of radiocaesium in organic soils. J Environ Radioactivity 23: 285–302

    Google Scholar 

  • Singer A (1984) The palaeoclimatic interpretation of clay minerals in sediments–a review. Earth Sci Rev 21: 251–293

    Google Scholar 

  • Srodon J, Eberl DD (1984) Illite. In: Bailey SW (ed) Micas. Reviews in mineralogy 13. Mineralogical Society of America, Washington, DC, pp 495–544

    Google Scholar 

  • Stoddart DR (1971) World erosion and sedimentation. In: Chorley RJ (ed) Introduction to fluvial processes. Methuen, London, pp 8–29

    Google Scholar 

  • Stow DAV (1994) Deep sea sediment transport. In: Pye K (ed) Sediment transport and depositional processes. Blackwell, Oxford, pp 257–291

    Google Scholar 

  • Strakhov NM (1967) Principles of lithogenesis. Oliver and Boyd Edingburgh Stumm W (1992) The chemistry of the solid water interface: processes at the mineral water and particle water interface. John Wiley, New York, 440 pp

    Google Scholar 

  • Tettenhorst R, Morre GE Jr (1978) Stevensite ooolites from the Green River Formation of central Utah. J Sediment Petrol 48: 587–594

    Google Scholar 

  • Thiry M, Jacquin T (1993) Clay mineral distribution related to rift activity, sea level changes an paleogeography in the Cretaceous of the Atlantic Ocean. Clay Min 28: 61–84

    Google Scholar 

  • Trauth N (1977) Argiles évaporitic dans la sédimentation carbonatée continental et épicontinentale tertiaire. Bassins de Paris, de Mormoiron et de Salinelles (France), Jbel Ghassoul (Maroc). Sci Géol Strasbourg Mem 49, 203 pp

    Google Scholar 

  • Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34: 139–153

    Google Scholar 

  • Vali H, Martin RF, Amarantidis G, Morteani G (1993) Smectite-group minerals in deep-sea sediments: monomineralic solid-solutions or multiphase mixtures? Am Mineral 78: 1217–1229

    Google Scholar 

  • van Olphen H (1977) An introduction to clay colloidal chemistry. John Wiley, New York, 318 pp

    Google Scholar 

  • Weaver CE (1989) Clays, muds and shales. Developments in sedimentology 44. Elsevier, Amsterdam, 819 pp

    Google Scholar 

  • Weaver CE, Beck KC (1977) Miocene of the S.E., United States: a model for chemical sedimentation in a peri-marine environment. Sediment Geol 17: 234

    Google Scholar 

  • Wells JT, Coleman JM (1981) Physical processes and fine-grained sediment dynamics, coast of Surinam, South America. J Sediment Petrol 51: 1053–1068

    Google Scholar 

  • Windom HL (1969) Atmospheric dust in permanent snow fields; implications to marine sedimentation. Bull Geol Soc Am 80: 761–82

    Google Scholar 

  • Windom HL (1975) Eolian contributions to marine sediments. J Sediment Petrol 45: 520–529

    Google Scholar 

  • Windom HL (1976) Lithogenous material in marine sediments. In: Riley JP, Chester R (eds) Chemical oceanography, vol 5. Academic Press, New York, pp 103–135

    Google Scholar 

  • Yariv S, Cross A (1979) Geochemistry of colloid systems for earth scientists. Springer, Berlin Heidelberg New York, 450 pp

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hillier, S. (1995). Erosion, Sedimentation and Sedimentary Origin of Clays. In: Velde, B. (eds) Origin and Mineralogy of Clays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12648-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12648-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08195-8

  • Online ISBN: 978-3-662-12648-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics