Skip to main content

Unit Commitment and Thermal Optimization — Problem Statement

  • Conference paper
Optimization in Planning and Operation of Electric Power Systems
  • 353 Accesses

Abstract

The demands made on the electrical energy supply are manifold. Consumers expect an inexpensive, adequate supply at all times with high degree of reliability and closely defined quality criteria (voltage, frequency). National and international institutions require attainment of objectives and compliance with regulations in line with the energy and environmental policies. To an increasing extent, long-term quantitative requirements are also bearing an influence on the operation and development of supply systems. In the FRG this applies to coal with precisely defined obligation to take supplies, it applies in general to natural gas with its ‘take or pay rulings and as a rule, it applies to agreements with zoned tariffs and minimum periods of use. Hydrothermal systems with annual reservoirs have long been familiar with the constraints imposed by yearly reservoir management. The inclusion of other regenerative sources of energy, such as the sun and wind, makes new demands on development and operation of the systems. The way in which the supply sector is developing is characterized by a trend for both the systems themselves and the demands from outside made on them to become more and more complex. With the introduction of a more liberal energy and power supply market (e.g. ‘Third Party Access’) there will be an additional increase in the pressure of costs for the energy supply companies. Consequently, the question of optimal system operation is gaining in importance. Heuristic approaches based on the experience of the load dispatcher are no longer adequate. Mathematical, computer-aided approaches are increasingly being used. However, a closed solution to the overall range of problems involved in system optimization cannot be accomplished in the foreseeable future; it is necessary to break them down into individual problems: i) expansion and design planning, ii) revision planning, iii) fuel resource scheduling and reservoir management, iv) weekly and daily unit commitment, v) load distribution, vi) load management, vii) voltage/reactive power optimization. Due to the long periods of time considered in long-term planning (up to 20 years for development planning and 1–5 years for revision and resource scheduling) stochastic influences such as the failure mode of the components and frequency distribution of the load and sources of supply have a strong bearing. This must be taken into account in modelling and method selection. In the case of short-term planning the emphasis is the exact reproduction of the operating behavior of the individual components. A deterministic consideration is adequate. During the course of this presentation the incidental conditions affecting the individual problems will be described. The question of how to link the problem areas will be looked at more closely. Modelling approaches which have been adopted in operational practice will be illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. VIK-Statistik, 1991/1992

    Google Scholar 

  2. N.N.: Energie und Klima; Hrsg. Enquete-Kommission ‘Vorsorge zum Schutz der Erdatmosphäre’ of the German Bundestag, Economica Verlag 1990

    Google Scholar 

  3. Edwin, K.: Methoden systemtechnischer Planung. Lecture manuscript, RWTH Aachen,1989

    Google Scholar 

  4. Wolter, H.: Kurzfristige Kraftwerkseinsatzoptimierung in thermischen Systemen mit langfristigen Nebenbedingungen. Dissertation, RWTH Aachen, 1990

    Google Scholar 

  5. Mariani, E.: Methodologies in Medium-Long Term Scheduling. CIGRE Paper No. SC 87 03 Tokyo, 1987

    Google Scholar 

  6. Vemuri, S.; et al: Fuel Ressource Scheduling, Part I - Overview of an Energy Management Problem; IEEE Trans. PAS-103, No. 7 July 1984

    Google Scholar 

  7. Harhammer, P. G.; Infanger, Gerd, M.: Decision support system–operation planning; Electrical Power & Energy Systems, Vol. 11 (9189), No. 3, S. 155–160

    Google Scholar 

  8. Slomski, H.: Optimale Einsatzplanung thermischer Kraftwerke unter Berücksichtigung langfristiger Nebenbedingungen. Dissertation, Universität Dortmund, 1990

    Google Scholar 

  9. Th. Schroeder: Langfristige Energieinsatzplanung von Kraftwerkssystemen unter Berücksichtigung Stochastischer Einflüsse. Dissertation, RWTH Aachen, 1984

    Google Scholar 

  10. R. Hummel.: Blockeinsatzplanung und Lastaufteilung unter Berücksichtigung des Netzes. Dissertation, RWTH Aachen, 1985

    Google Scholar 

  11. A. Stockem: Optimale Tageseinsatzplanung in regionalen Elektrizitätsversorgungsunternehmen unter Berücksichtigung der steuerbaren Last. Dissertation, RWTH Aachen, 1988

    Google Scholar 

  12. Glavitsch, H.; Spoerry, M.: Quadratic Loss Formula for Reactive Dispatch. IEEE Trans. PAS-102 (1983), S. 3850–3858

    Google Scholar 

  13. Lemmer, S.: Rechnergestützte Spannungs-Blindleistungssteuerung in Hochspannungsnetzen. Dissertation, RWTH Aachen, 1982

    Google Scholar 

  14. United Nations Energy Statistics Yearbook 1979. 1987

    Google Scholar 

  15. Curtius, F.: Zum Einfluß des Revisionsplans auf die Betriebskosten im Kraftwerksystern. Dissertation, RWTH Aachen, 1985

    Google Scholar 

  16. Ortjohann, E.: Mathematisches Modell und Verfahren zur langfristigen Einsatzplanung thermischer Kraftwerkssysteme unter Berücksichtigung des Energiefremdbezuges aus dem Verbundnetz. Dissertation, Universität-Gesamthochschule Paderborn, 1989

    Google Scholar 

  17. Möhring-Hüser, W.; Orthjohann, E.: Verfahren zur integrierten kurz-und langfristigen Kraftwerkseinsatzplanung. Elektrizitätswirtschaft, Jg. 90 (1991), Heft 24, S. 1323–1329

    Google Scholar 

  18. Duran, H.; et al: Long term generation scheduling of hydro thermal systems with stochastic inflows. IFAC, Rio de Janeiro, 1985

    Google Scholar 

  19. Sherkat, V. R.; et al: Stochastic Long-Term Hydrothermal Optimization for a Multireservoir System. IEEE Trans. PAS-104, No. 8, 1985

    Google Scholar 

  20. Cohen, A. I.; Sherkat, V. R.: Optimization-Based Methods for Operations Scheduling Proceedings of the IEEE, Vol. 75 (1987), Nr. 12, S. 1574–1591

    Google Scholar 

  21. Machate R.-D.: Wirtschaftliche Auswirkungen ungenauer Eingangsinformationen bei der kurzfristigen Einsatzplanung thermischer Kraftwerke. Dissertation, RWTH Aachen, 1979

    Google Scholar 

  22. Mariani, E.: Methodologies in Short-Term Scheduling. CIGRE Paper No. SC 87 02 Tokyo, 1987

    Google Scholar 

  23. Pang, C.K., et al: Pool Daily Fuel Scheduling. EPRI Report, EL-1659, Palo Alto, CA, 1981

    Google Scholar 

  24. Kumar, R., et al: Fuel Ressource Scheduling, Part III - The Short-Term Problem IEEE Trans. PAS-103, No. 7 July 1984

    Google Scholar 

  25. Krenz, G.: Zur Frage des Nutzens mathematischer Optimierungsverfahren bei der Tageseinsatzplanung von Kraftwerkssystemen. Dissertation, RWTH Aachen, 1983

    Google Scholar 

  26. S.K. Tong; S.M. Shahidepur: Combination of Lagrangian-relaxation and linear-programming approaches for fuel-constrained unit-commitment problems. IEE PROCEEDINGS, Vol. 136, No. 3, May 1989, S. 162–174

    Google Scholar 

  27. Effíer, L.; Steiner, H.; Wagner, H.: Energiebezugsoptimierung und Lastführung; etz Bd.112 (1991), Heft 9, S. 442–447

    Google Scholar 

  28. N.N.: EDV-Optimierung des Kraftwerkseinsatzes–Definitionen, Anforderungen, Verfahren. Elektrizitätswirtschaft, Jg. 89 (1990), Heft 15, S. 848–855

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braun, H. (1993). Unit Commitment and Thermal Optimization — Problem Statement. In: Frauendorfer, K., Glavitsch, H., Bacher, R. (eds) Optimization in Planning and Operation of Electric Power Systems. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-12646-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12646-2_5

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0718-9

  • Online ISBN: 978-3-662-12646-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics