Modelling with Stochastic Differential Equations

  • Peter E. Kloeden
  • Eckhard Platen
Part of the Applications of Mathematics book series (SMAP, volume 23)


Important issues which arise when stochastic differential equations are used in applications are discussed in this chapter, in particular the appropriateness of the Ito or Stratonovich version of an equation. Stochastic stability, parametric estimation, stochastic control and filtering are also considered.


Lyapunov Exponent Stochastic Differential Equation Wiener Process Stochastic Stability Optimal Stochastic Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  1. McShane, E. J. (1972). Stochastic differential equations and models of random processes. In Probability Theory, pp. 263–294. Proc. Sixth Berkeley Sympos.Google Scholar
  2. McShane, E. J. (1974). Stochastic Calculus and Stochastic Models. Academic Press, New York.Google Scholar
  3. McShane, E. J. (1976). The choice of a stochastic model for a noisy system. Math. Prog. Study 6, 79MathSciNetCrossRefGoogle Scholar
  4. Turelli, M. (1977). Random environments and stochastic calculus. Theory Pop. BioL 12, 140–178.MathSciNetMATHCrossRefGoogle Scholar
  5. van Kampen, N. G. (1981a). Ito versus Stratonovich. J. Statist. Phys. 24 (1), 175–187.MathSciNetMATHCrossRefGoogle Scholar
  6. Horsthemke, W. & R. Lefever (1984). Noise Induced Transitions. Springer.Google Scholar
  7. Wong, E. W. & M. Zakai (1965a). On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36, 1560–1564.MathSciNetMATHCrossRefGoogle Scholar
  8. Wong, E. W. & M. Zakai (1965b). On the relation between ordinary and stochastic differential equations. Internat. J. Engrg. Sci. 3, 213–229.MathSciNetMATHCrossRefGoogle Scholar
  9. Wong, E. W. & M. Zakai (1969). Riemann-Stieltjes approximations of stochastic integrals. Z. Wahrsch. Verw. Gebiete 12, 87–97.MathSciNetMATHCrossRefGoogle Scholar
  10. Kushner, H. J. (1974). On the weak convergence of interpolated Markov chains to a diffusion. Ann. Probab. 2, 40–50.MathSciNetMATHCrossRefGoogle Scholar
  11. Kushner, H. J. (1984). Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory. MIT Press, Cambridge MA.MATHGoogle Scholar
  12. Kozin, F. (1969). A survey of stability of stochastic systems. Automatica 5, 95–112.MathSciNetMATHCrossRefGoogle Scholar
  13. Liptser, R. & A. Shiryaev (1977). Statistics of Random Processes: I. General Theory, Volume 5 of Appl. Math. Springer.Google Scholar
  14. Liptser, R. & A. Shiryaev (1978). Statistics of Random Processes: II. Applications, Volume 6 of Appl. Math. Springer.Google Scholar
  15. Aström, K. L. (1970). Introduction to Stochastic Control Theory. Academic Press, New York.MATHGoogle Scholar
  16. Jazwinski, A. (1970). Stochastic Processes and Filtering Theory. Academic Press, London.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Peter E. Kloeden
    • 1
  • Eckhard Platen
    • 2
  1. 1.Fachbereich MathematikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  2. 2.School of Mathematical Sciences and School of Finance & EconomicsUniversity of Technology, SydneyBroadwayAustralia

Personalised recommendations