Skip to main content

Part of the book series: Applications of Mathematics ((SMAP,volume 23))

  • 8953 Accesses

Abstract

We saw in the previous chapter that higher order weak Taylor schemes require the determination and evaluation of derivatives of various orders of the drift and diffusion coefficients. As with strong schemes, we can also derive Runge-Kutta like weak approximations which avoid the use of such derivatives. Here too, these will not be simply heuristic generalizations of deterministic Runge-Kutta schemes. We shall also introduce extrapolation methods, implicit schemes and predictor-corrector methods in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical Notes

  • Talay, D. (1984). Efficient numerical schemes for the approximation of expectations of functionals of the solution of an SDE and applications. In Filtering and Control of Random Processes,Volume 61 of Lecture Notes in Control and Inform. Sci.,pp. 294-313. Springer.

    Google Scholar 

  • Platen, E. (1984). Zur zeitdiskreten Approximation von Itoprozessen. Diss. B., IMath, Akad. der Wiss. der DDR, Berlin.

    Google Scholar 

  • Milstein, G. N. (1985, 1988a ). Approximate integration of stochastic differential equations. Theory Probab. Appl. 19, 557 - 562.

    Google Scholar 

  • Mackevicius, V. (1994). Second order weak approximations for Stratonovich stochastic differential equations. Liet. Mat. Rink. 34(2), 226-247. (transl. Lithuanian Math. Journal, 34 (2), 183 - 200 ).

    Article  MathSciNet  Google Scholar 

  • Komori, Y. and T. Mitsui (1995). Stable ROW-type weak scheme for stochastic differential equations. Monte Carlo Methods AppL 1 (4), 279 - 300.

    Article  MathSciNet  MATH  Google Scholar 

  • Talay, D. and L. Tubaro (1990). Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (4), 483 - 509.

    Article  MathSciNet  MATH  Google Scholar 

  • Hofmann, N. and E. Platen (1994). Stability of weak numerical schemes for stochastic differential equations. Comput. Math. AppL 28(10-12), 45-57.

    Google Scholar 

  • Hofmann, N. (1994). Beiträge zur schwachen Approximation stochastischer Differentialgleichungen. Ph. D. thesis, Dissertation A, Humboldt Universität Berlin.

    Google Scholar 

  • Goodlett, S. T. and E. J. Allen (1994). A variance reduction technique for use with the extrapolated Euler method for numerical solution of stochastic differential equations. Stochastic Anal. Appt 12(1), 131-140.

    Google Scholar 

  • Mackevicius, V. (1996). Extrapolation of approximations of solutions of stochastic differential equations. In Probability Theory and Mathematical Statistics, pp. 276 - 297. World Scientific, Singapore.

    Google Scholar 

  • Artemiev, S. S. (1985). A variable step algorithm for numerical solution of stochastic differential equations. Chisl. Metody Mekh. Sploshn. Sredy 16 (2), 11 - 23. (in Russian).

    Google Scholar 

  • Müller-Gronbach, T. (1996). Optimal design for approximating the path of a stochastic process. J. Statist. Plann. Inference 49, 371 - 385.

    Article  MATH  Google Scholar 

  • Gaines, J. G. and T. J. Lyons (1997). Variable step size control in the numerical solution of stochastic differential equations. SIAM J. AppL. Math. 57 (5), 1455 - 1484.

    Article  MathSciNet  MATH  Google Scholar 

  • Mauthner, S. (1998). Step size control in the numerical solution of stochastic differential equations. J. Comput. AppL Math. 100(1), 93 - 109.

    Google Scholar 

  • Burrage, P. M. (1998). Runge-Kutta methods for stochastic differential equations. Ph. D. thesis, University of Queensland, Brisbane, Australia.

    Google Scholar 

  • Hofmann, N. (1994). Beiträge zur schwachen Approximation stochastischer Differentialgleichungen. Ph. D. thesis, Dissertation A, Humboldt Universität Berlin.

    Google Scholar 

  • Hofmann, N., T. Müller-Gronbach, and K. Ritter (1998). Optimal approximation of stochastic differential equations by adaptive step-size control. Preprint Nr. A-9-98, Fachbereich Mathematik, Freie Universität Berlin.

    Google Scholar 

  • Milstein, G. N. (1988a). Numerical Integration of Stochastic Differential Equations. Urals Univ. Press, Sverdlovsk. (in Russian).

    Google Scholar 

  • Milstein, G. N. (1988b). A theorem of the order of convergence of mean square approximations of systems of stochastic differential equations. Theory Probab. AppL 32, 738 - 741.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kloeden, P.E., Platen, E. (1992). Explicit and Implicit Weak Approximations. In: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12616-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12616-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08107-1

  • Online ISBN: 978-3-662-12616-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics