Advertisement

Seminormal Functions in Optimization Theory

  • E. J. Balder
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 255)

Abstract

Let (X,d) be a metric space and let (V,P,<·,·>) be a pair of locally convex spaces, paired by a strict duality.

Keywords

Optimization Theory Lower Semicontinuity Optimal Control Theory Unilateral Constraint Weak Star Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balder, E.J. (1983). On Seminormality of Integral Functionals and Their Integrands, Preprint No. 302, Mathematical Institute, Utrecht. To appear in SIAM J. Control Optim.Google Scholar
  2. Balder, E.J. (1984). A general approach to lower semicontinuity and lowerGoogle Scholar
  3. closure in optimal control theory. SIAM J. Control Optim. 22:570–598. Brooks, J.K. and Chacon, R.V. (1980). Continuity and compactness of mea-Google Scholar
  4. sures. Adv. Math. 37: 16–26.Google Scholar
  5. Castaing, C., and Valadier, M. (1977). Convex Analysis and Measurable Multifunctions. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  6. Cesari, L. (1966). Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. I. Trans. Amer. Math. Soc. 124: 369–412.Google Scholar
  7. Cesari, L. (1970). Seminormality and upper semicontinuity in optimal control. J. Optim. Theory Appl. 6: 114–137.Google Scholar
  8. Cesari, L. (1983). Optimization-Theory and Applications. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  9. Clarke, F.H. (1975). Generalized gradients and applications. Trans. Amer. Math. Soc. 205: 247–262.Google Scholar
  10. McShane, E.J. (1934). Existence theorems for ordinary problems of the calculus of variations. Ann. Scuola Norm. Sup. Pisa (2) 3: 181–211, 287315.Google Scholar
  11. Tonelli, L. (1921). Fondamenti di Calcolo delle Variazioni. Zanichelli, Bologna.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • E. J. Balder
    • 1
    • 2
  1. 1.Mathematical InstituteUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Department of Statistics and ProbabilityMichigan State UniversityEast LansingUSA

Personalised recommendations