New Trends in Vertebrate Neurosecretion

  • Lutz Vollrath


In a review dealing with the physiology of the neurohypophysis published in 1968 (Farrell et al.) the authors felt that in the preceding four years little new of fundamental nature had appeared. I am not sure whether the present audience will agree with this view. I feel however that, had this really been the case, it could only have meant that those years represented a phase of seeming quiescence in which the foundation was laid for the enormous progress to take place in the last quinquennium. The papers delivered at the present symposium have reflected this progress very clearly and have left no doubt that progress in the field of vertebrate neurosecretion will continue to be rapid.


Pineal Gland Median Eminence Neurosecretory Cell Posterior Pituitary Gland Neurosecretory Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A.B.M., Laurence, K.M., Davies, K., Campbell, H., Turnbull, A.C.: Fetal adrenal weight and the cause of premature delivery in human pregnancy. J. Obstet. Gynaec. Brit. Cwlth. 78, 481–488 (1971).CrossRefGoogle Scholar
  2. Bargmann, W.: Conclusions-Schlußwort-Résumé. In: Stutinsky, F. (Ed.): Neurosecretion, pp. 241–247. Berlin-Heidelberg-New York: Springer 1967.CrossRefGoogle Scholar
  3. Bargmann, W., Scharrer, B.: Aspects of neuroendocrinology. Berlin-Heidelberg-New York: Springer 1970.CrossRefGoogle Scholar
  4. Barker, J.L., Crayton, J. W., Nicoll, R. A. : Supraoptic neurosecretory cells: autonomic modulation. Science 171, 206–207 (1971a).PubMedCrossRefGoogle Scholar
  5. Barker, J.L., Crayton, J.W., Nicoll, R.A.: Supraoptic neurosecretory cells: adrenergic and cholinergic sensitivity. Science 171, 208–210 (1971b).PubMedCrossRefGoogle Scholar
  6. Baumgarten, H. G., Björklund, A., Holstein, A.F., Nobin, A. : Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary. Z. Zellforsch. 126, 483–517 (1972).PubMedCrossRefGoogle Scholar
  7. Benson, B., Matthews, M. J., Rodin, A. E.: Studies on a non-melatonin pineal antigonadotrophin. Acta endocr. (Kbh.) 69, 257–266 (1972).Google Scholar
  8. Bern, H.A.: Concluding remarks. Bargmann, W., Scharrer, B. (Eds.): Aspects of neuroendocrinology, pp. 374–377. Berlin-Heidelberg-New York: Springer 1970.CrossRefGoogle Scholar
  9. Bock, R.: Morphometrische Untersuchungen zum histologischen Nachweis des Corticotropinreleasing factor im Infundibulum der Ratte. Z. Anat. Entwickl.-Gesch. 137, 1–29 (1972).CrossRefGoogle Scholar
  10. Bridges, T.E., Fisher, A.W., Gosbee, J.L., Lederis, K., Santolaya, R.C: Acetylcholine and cholines terases (assays and light- and electron microscopical histochemistry) in different parts of the pituitary of rat, rabbit and domestic pig. Z. Zellforsch. 136, 1–18 (1973).PubMedCrossRefGoogle Scholar
  11. Cannata, M.A., Morris, J.F.: Changes of the appearance of hypothalamo-neurohypophysial neurosecretory granules associated with their maturation. J. Endocr. 57, 531–538 (1973).PubMedCrossRefGoogle Scholar
  12. Douglas, W.W., Nagasawa, J., Schulz, R.A.: Coated microvesicles in neurosecretory terminals of posterior pituitary glands shed their coats to become smooth “synaptic” vesicles. Nature (Lond.) 232, 340–341 (1971).CrossRefGoogle Scholar
  13. Douglas, W.W., Poisner, A. M. : Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. J. Physiol. (Lond.) 172, 1–18 (1964).Google Scholar
  14. Dyball, R.E. J., Dyer, R.G. : Plasma oxytocin concentration and paraventricular neurone activity in rats with diencephalic islands and intact brains. J. Physiol. (Lond.) 216, 227–235 (1971).Google Scholar
  15. Dyer, R.G., Dyball, R.E.J., Morris, J.F.: The effect of hypothalamic deafferentation upon the ultrastructure and hormone contents of the paraventricular nucleus. J. Endocr. 57, 509–615 (1973).PubMedCrossRefGoogle Scholar
  16. Ellis, H.K., Watkins, W.B., Evans, J. J.: Distribution of soluble proteins in the mammalian neurohypophysis and their cross-species reactivity with anti-neurophysin. J. Endocr. 55, 565–575 (1972).PubMedCrossRefGoogle Scholar
  17. Farrell, G., Fabre, L.F., Rauschkolb, E.W.: The neurohypophysis. Ann. Rev. Physiol. 30, 557–588 (1968).CrossRefGoogle Scholar
  18. Guldner, F.-H., Wolff, J. R. : Neuro-glial synaptoid contacts in the median eminence of the rat: ultrastructure, staining properties and distribution on tanycytes. Brain Res. 61, 217–234 (1973).PubMedCrossRefGoogle Scholar
  19. Heller, H., Clark, R.B.: Neurosecretion. London, New York: Academic Press 1962.Google Scholar
  20. Herlant, M.: Mode de libération des produits de neurosécrétion. In: Stutinsky, F. (Ed.): Neurosecretion, pp. 20–35. Berlin-Heidelberg-New York: Springer 1967.CrossRefGoogle Scholar
  21. Holmes, R.L., Knowles, F. G. W. : “Synaptic” vesicles in the neurohypophysis. Nature (Lond.) 185, 710 (1964).CrossRefGoogle Scholar
  22. Jhirad, A., Vaga, T. : Induction of labor by breast stimulation. Obstet, and Gynec. 41, 347–350 (1973).Google Scholar
  23. Jöchle, W. : Corticosteroid-induced parturition in domestic animals. Ann. Rev. Pharmacol. 13, 33–55 (1973).PubMedCrossRefGoogle Scholar
  24. Kiernan, J. A. : Pituicytes and the regenerative properties of neurosecretory and other axons in the rat. J. Anat. (Lond.) 109, 97–114 (1971).Google Scholar
  25. Knowles, F.: Neuronal properties of neurosecretory cells. In: Stutinsky, F. (Ed.): Neurosecretion, pp. 8–19. Berlin-Heidelberg-New York: Springer 1967.CrossRefGoogle Scholar
  26. Knowles, F.: Concluding remarks. In: Knigge, K.M., Scott, D.E., Weindl, A. (Eds.): Brain-endocrine interaction. Median eminence: Structure and function, pp. 364–368. Basel: Karger 1972.Google Scholar
  27. Knowles, F., Weatherhead, B., Martin, R.: The ultrastructure of neurosecretory fibre terminals after zinc-iodine-osmium impregnation. In: Bargmann, W., Scharrer, B. (Eds.): Aspects of neuroendocrinology, pp. 159–165. Berlin-Heidelberg-New York: Springer 1970.CrossRefGoogle Scholar
  28. Krisch, B., Becker, K., Bargmann, W.: Exocytose im Hinterlappen der Hypophyse. Z. Zellforsch. 123, 47–54 (1972).PubMedCrossRefGoogle Scholar
  29. Lederis, K. : Fine structure and hormone content of the hypothalamo-neurohypophysial system of the rainbow trout (Salmo irideus) exposed to sea-water. Gen. comp. Endocr. 4, 638–661 (1964).Google Scholar
  30. Liggins, G. C. : Premature parturition after infusion of corticotropin or Cortisol into foetal lambs. J. Endocr. 42, 323–329 (1968).PubMedCrossRefGoogle Scholar
  31. Liggins, G. C. : Premature delivery of foetal lambs infused with glucocorticoids. J. Endocr. 45, 515–523 (1969).PubMedCrossRefGoogle Scholar
  32. Liggins, G.C., Kennedy, P.C., Holm, L.W.: Failure of initiation of parturition after electrocoagulation of the pituitary of the foetal lamb. Amer. J. Obstet. Gynec. 98, 1080–1086 (1967).PubMedGoogle Scholar
  33. Morris, J.F., Cannata, M.A. : Ultrastructural preservation of the dense core of posterior pituitary neurosecretory granules and its implications for hormone release. J. Endocr. 57, 517–529 (1973).PubMedCrossRefGoogle Scholar
  34. Moss, R. L., Dyball, R. E. J., Cross, B. A. : Excitation of antidromically identified neurosecretory cells of the paraventricular nucleus by oxytocin applied iontophoretically. Exp. Neurol. 34, 95–102 (1972).PubMedCrossRefGoogle Scholar
  35. Moszkowska, A., Kordon, C., Ebels, I. : Biochemical fractions and mechanisms involved in the pineal modulation of pituitary gonadotropin release. In: Wolstenholme, G.E.W., Knight, J. (Eds.): The pineal gland, pp. 241–258. Edinburgh, London: Churchill Livingstone 1971.Google Scholar
  36. Murphy, B.E.P.: Does the human fetal adrenal play a role in parturition? Amer. J. Obstet. Gynec. 115, 521–525 (1973).PubMedGoogle Scholar
  37. Nagasawa, J., Douglas, W.W., Schulz, R.A.: Ultrastructural evidence of secretion by exo- cytosis and of “synaptic vesicle” formation in posterior pituitary glands. Nature (Lond.) 227, 407–409 (1970).CrossRefGoogle Scholar
  38. Nagasawa, J., Douglas, W.W., Schulz, R.A.: Micropinocytotic origin of coated and smooth microvesicles (“synaptic vesicles”) in neurosecretory terminals of posterior pituitary glands demonstrated by incorporation of horseradish peroxidase. Nature (Lond.) 232, 341–342 (1971).CrossRefGoogle Scholar
  39. Nordmann, J. J., Dreifuss, J. J., Legros, J. J. : A correlation of release of polypeptide hormones and of immunoreactive neurophysin from isolated rat neurohypophyses. Experientia (Basel) 27, 1344–1345 (1971).CrossRefGoogle Scholar
  40. Norström, A., Sjöstrand, J. : Axonal transport and turnover of neurohypophysial proteins of the rat. J. Neurochem. 18, 2007–2016 (1971).PubMedCrossRefGoogle Scholar
  41. Orts, R. J., Benson, B. : Inhibitory effects on serum and pituitary LH by a melatonin-free extract of bovine pineal glands. Life Sci. 12, Part II, 513–519 (1973).CrossRefGoogle Scholar
  42. Parry, H.B., Livett, B.G. : A new hypothalamic pathway to the median eminence containing neurophysin and its hypertrophy in sheep with natural scrapie. Nature (Lond.) 242, 63–65 (1973).CrossRefGoogle Scholar
  43. Pilgrim, C. : Morphologische und funktionelle Untersuchungen zur Neurosekretbildung. Enzymhistochemische, autoradiographische und elektronenmikroskopische Beobachtungen an Ratten unter osmotischer Belastung. Erg. Anat. Entw.-Gesch. 41, No. 4, 1–79 (1969).Google Scholar
  44. Reiter, R.J.: Comparative physiology: pineal gland. Ann. Rev. Physiol. 35, 305–328 (1973).CrossRefGoogle Scholar
  45. Santolaya, R.C, Bridges, T.E., Lederis, K. : Elementary granules, small vesicles and exocytosis in the rat neurohypophysis after acute haemorrhage. Z. Zeilforsch. 125, 277–288 (1972).CrossRefGoogle Scholar
  46. Stutinsky, F.: Neurosecretion. Berlin-Heidelberg-New York: Springer 1967.CrossRefGoogle Scholar
  47. Uttenthal, L. O., Livett, B.G., Hope, D.B. : Release of neurophysin together with vasopressinby a Ca2+ dependent mechanism. Phil. Trans. B 261, 379–380 (1971).CrossRefGoogle Scholar
  48. Vollrath, L. : Über die Herkunft „synaptischer” Bläschen in neurosekretorischen Axonen. Z. Zellforsch. 99, 146–152 (1969).PubMedCrossRefGoogle Scholar
  49. Vollrath, L.: The origin of “synaptic” vesicles in neurosecretory axons. In: Bargmann, W., Scharrer, B. (Eds.): Aspects of neuroendocrinology, pp. 173–176. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  50. Watkins, W.B., Evans, J. J.: Demonstration of neurophysin in the hypothalamo-neurohypophysial system of the normal and dehydrated rat by the use of cross-species reactive anti-neurophysins. Z. Zellforsch. 131, 149–170 (1972).PubMedCrossRefGoogle Scholar
  51. Whitaker, S., LaBella, F.S.: Electron microscopic histochemistry of Cholinesterase in the posterior, intermediate and anterior lobes of the rat pituitary. Z. Zellforsch. 130, 152–170 (1972).PubMedCrossRefGoogle Scholar
  52. Wittkowski, W. : Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des Tubero-hypophysären Systems der Ratte. Z. Zellforsch. 139, 101–148 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Lutz Vollrath
    • 1
  1. 1.Department of AnatomyKing’s CollegeLondonGreat Britain

Personalised recommendations