Extrahypothalamic Influences on the Tubero-Infundibular Dopamine Neurones and the Secretion of Luteinizing Hormone (LH) and Prolactin

  • W. Lichtensteiger


On structural grounds, a role of noradrenergic and serotoninergic projection systems in neuroendocrine control seems to be very plausible, since their projections to a large number of brain regions should enable them to favour or inhibit the establishment of complex response patterns consisting of both endocrine and behavioural processes. The local tubero-infundibular dopamine (DA) system introduces an additional dimension into this picture. Most of the available evidence indicates that these neurones act indirectly by modulating the release of releasing or inhibiting factors, but their position within neuroendocrine organization is far from being understood. We have tried to approach this question by investigating the neural input to the tuberal DA neurones. As a tool to disclose possible influences from other brain areas, we used a characteristic change in the fluorescence intensity of the cell bodies that can be detected by histochemical microfluorometry after local electrical or trans-synaptic stimulation as well as after various treatments known to be accompanied by an increase in catecholamine turnover (Lichtensteiger, 1969b, 1971; Heinrich et al., 1971; Lienhart et al., 1973). When a representative population of DA neurones is studied, such treatments can be shown to result in a fast increase in mean fluorescence intensity which, at least in some of the experiments, was found to be part of a biphasic intensity change.


Luteinizing Hormone Arcuate Nucleus Preoptic Area Stimulation Site Ventral Hippocampus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrén, K., Fuxe, K., Hamberger, L., Hökfelt, T.: Turnover changes in the tubero-infundibular dopamine neurons during the ovarian cycle of the rat. Endocrinology 88, 1415–1424 (1971).PubMedCrossRefGoogle Scholar
  2. Ajika, K., Krulich, L., McCann, S.M.: The effect of pentobarbital (Nembutal) on prolactin release in the rat. Proc. Soc. exp. Biol. (N. Y.) 141, 203–205 (1972).Google Scholar
  3. Anton-Tay, F., Pelham, R.W., Wurtman, R.J.: Increased turnover of 3H-norepinephrine in rat brain following castration or treatment with ovine follicle-stimulation hormone. Endocrinology 84, 1489–1492 (1969).PubMedCrossRefGoogle Scholar
  4. Aron, C., Asch, G., Roos, J.: Triggering of ovulation by coitus in the rat. Int. Rev. Cytol. 20, 139–172 (1966).PubMedCrossRefGoogle Scholar
  5. Bapna, J., Neff, N.H., Costa, E.: A method for studying norepinephrine and serotonin metabolism in small regions of rat brain: Effect of ovariectomy on amine metabolism in anterior and posterior hypothalamus. Endocrinology 89, 1345–1349 (1971).PubMedCrossRefGoogle Scholar
  6. Barrett, A. M.: The effects of some autonomic blocking agents on the heart rates of anaesthtized and pithed rats. Europ. J. Pharmacol. 15, 267–273 (1971).CrossRefGoogle Scholar
  7. Barry, J., Dubois, M.P., Poulain, P., Leonardelli, J.: Caractérisation et topographie des neurones hypothalamiques immunoréactifs avec des anticorps anti-LRF de synthèse. C. R. Acad. Sci. (Paris) 276 (Série D), 3191–3193 (1973).Google Scholar
  8. Björklund, A., Falck, B., Hromek, F., Owman, C., West, K.A.: Identification and terminal distribution of the tubero-hypophyseal monoamine fibre systems in the rat by means of stereotaxic and microspectrofluorimetric techniques. Brain Res. 17, 1–23 (1970).PubMedCrossRefGoogle Scholar
  9. Björklund, A., Moore, R. Y., Nobin, A., Stenevi, U.: The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res. 51, 171–191 (1973).PubMedCrossRefGoogle Scholar
  10. Blake, CA., Sawyer, C.H.: Nicotine blocks the suckling-induced rise in circulating prolactin in rats. Science 177, 619–621 (1972).PubMedCrossRefGoogle Scholar
  11. Collu, R., Fraschini, F., Visconti, P., Martini, L.: Adrenergic and serotoninergic control of growth hormone secretion in adult male rats. Endocrinology 90, 1231–1237 (1972).PubMedCrossRefGoogle Scholar
  12. Cross, B. A., Dyer, R.G.: Unit activity in rat diencephalic islands — the effect of anaesthetics J. Physiol. (Lond.) 212, 467–481 (1971).Google Scholar
  13. Donoso, A.O., de Gutierrez Moyano, M.: Adrenergic activity in hypothalamus and ovulation. Proc. Soc. exp. Biol. (N. Y.) 135, 633–635 (1970).Google Scholar
  14. Donoso, A.O., Bishop, W., Fawcett, C.P., Krulich, L., McCann, S.M.: Effects of drugs that modify brain monoamine concentrations on plasma gonadotropin and prolactin levels in the rat. Endocrinology 89, 774–784 (1971).PubMedCrossRefGoogle Scholar
  15. Ellendorff, F., Wuttke, W.: Limbic, mesencephalic and peripheral influence on preoptic neuronal activity in the rat. Pflügers Arch. ges. Physiol. 339, Suppl. R 84 (1973).Google Scholar
  16. Ellendorff, F., Colombo, J. A., Blake, C.A., Whitmoyer, D.I., Sawyer, C.H.: Effects of electrical stimulation of the amygdala on gonadotropin release and ovulation in the rat. Proc. Soc. exp. Biol. (N. Y.) 142, 417–420 (1973).Google Scholar
  17. Fuxe, K., Hökfeltj T., Nilsson, O.: Castration, sex hormones, and tubero-infundibular dopamine neurons. Neuroendocrinology 5, 107–120 (1969).PubMedCrossRefGoogle Scholar
  18. Fuxe, K., Hökfelt, T., Sundstedt, C-D., Ahrén, K., Hamberger, L.: Amine turnover changes in the tubero-infundibular dopamine (DA) neurons in immature rats injected with PMS. Neuroendocrinology 10, 282–300 (1972).PubMedCrossRefGoogle Scholar
  19. Heinrich, U., Lichtensteiger, W., Langemann, H.: Effect of morphine on the catecholamine content of midbrain nerve cell groups in rat and mouse. J. Pharmacol. exp. Ther. 179, 259–267 (1971).PubMedGoogle Scholar
  20. Hökfelt, T., Fuxe, K.: Effects of prolactin and ergot alkaloids on the tubero-infundibular dopamine (DA) neurons. Neuroendrocrinology 9, 100–122 (1972).CrossRefGoogle Scholar
  21. Kalra, S.P., McCann, S.M.: Modification of brain catecholamine level and LH release by preoptic stimulation. Excerpta Medica Int. Congress Series No. 256, Abstracts, IV Int. Congress of Endocrinology, Washington 1972, Abstract No. 508. Amsterdam: Excerpta Medica 1972.Google Scholar
  22. Kamberi, I.A., Mical, R.S., Porter, J.C.: Effect of anterior pituitary perfusion and intraventricular injection of catecholamines and indoleamines on LH release. Endocrinology 87, 1–12 (1970a).PubMedCrossRefGoogle Scholar
  23. Kamberi, I.A., Mical, R.S., Porter, J. C.: Prolactin-inhibiting activity in hypophysial stalk blood and elevation by dopamine. Experientia (Basel) 26, 1150–1151 (1970b).CrossRefGoogle Scholar
  24. Keller, P. J., Lichtensteiger, W.: Stimulation of tubero-infundibular dopamine neurones and gonadotrophin secretion. J. Physiol. (Lond.) 219, 385–401 (1971).Google Scholar
  25. Kordon, C.: Effects of selective experimental changes in regional hypothalamic monoamine levels on superovulation in the immature rat. Neuroendocrinology 4, 129–138 (1969).PubMedCrossRefGoogle Scholar
  26. Kordon, C.: Blockade of ovulation in the immature rat by local microinjection of α-methyl-dopa into the arcuate region of the hypothalamus. Neuroendocrinology 7, 202–209 (1971).PubMedCrossRefGoogle Scholar
  27. Kordon, C.: Rôle de la Serotonine hypothalamique dans la libération de prolactine induite par succion du mamelon chez la rate lactante. Lille méd. 17, 1406 (1972).Google Scholar
  28. Lienhart, R., Lichtensteiger, W., Langemann, H.: Studies on midbrain dopamine (DA) neurons in morphine-tolerant mice. Experientia (Basel) 29, 764–765 (1973).Google Scholar
  29. Lichtensteiger, W.: Cyclic variations of catecholamine content in hypothalamic nerve cells during the estrous cycle of the rat, with a concomitant study of the substantia nigra. J. Pharmacol. exp. Ther. 165, 204–215 (1969a).PubMedGoogle Scholar
  30. Lichtensteiger, W.: The catecholamine content of hypothalamic nerve cells after acute exposure to cold and thyroxine administration. J. Physiol. (Lond.) 203, 675–687 (1969b).Google Scholar
  31. Lichtensteiger, W.: Katecholaminhaltige Neurone in der neuroendokrinen Steuerung. Prinzip und Anwendung der Mikrofluorimetrie. Progr. Histochem. Cytochem. 1 (No. 4), 185–276 (1970).Google Scholar
  32. Lichtensteiger, W.: Effect of electrical stimulation on the fluorescence intensity of catechol -amine-containing tuberal nerve cells. J. Physiol. (Lond.) 218, 63–84 (1971).Google Scholar
  33. Lichtensteiger, W.: Changes in hypothalamic monoamines in relation to endocrine states: Functional characteristics of tubero-infundibular dopamine neurons. In: Endocrinology, Proc. of the Fourth Int. Congress, Washington 1972. Int. Congr. Ser. No. 273, pp. 131–137. Amsterdam: Excerpta Medica 1973.Google Scholar
  34. Lichtensteiger, W., Keller, P.J.: Tubero-infundibular dopamine neurons and the secretion of luteinizing hormone and prolactin: extrahypothalamic influences, interaction with cholinergic systems and the effect of urethane anesthesia. Brain Research 74, 279–303 (1974).PubMedCrossRefGoogle Scholar
  35. Lu, K.-H., Meites, J.: Inhibition by L-dopa and monoamine oxidase inhibitors of pituitary prolactin release; stimulation by methyldopa and amphetamine. Proc. Soc. exp. Biol. (N. Y.) 137, 480–483 (1971).Google Scholar
  36. Müller, E.E., Cocchi, D.: Brain monoamines and the control of growth hormone release. In: Neurosecretion — The Final Neuroendocrine Pathway (VI. Int. Symposium on Neurosecretion, London 1973), (F. Knowles, L. Vollrath, Eds.). Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  37. Murphy, J.T., Dreifuss, J.J., Gloor, P.: Response of hypothalamic neurons to repetitive amygdaloid stimulation. Brain Res. 8, 153–166 (1968).PubMedCrossRefGoogle Scholar
  38. Raziano, J., Cowchock, S., Ferin, M., Vande Wiele, R.L.: Estrogen-dependency of monoamine-induced ovulation. Endocrinology 88, 1516–1518 (1971).PubMedCrossRefGoogle Scholar
  39. Reinert, H.: Urethane hyperglycaemia and hypothalamic activation. Nature (Lond.) 204, 889–891 (1964).CrossRefGoogle Scholar
  40. Sawyer, C.H., Markee, J.E., Townsend, B.F.: Cholinergic and adrenergic components in the neurohumoral control of the release of LH in the rabbit. Endocrinology 44,18–37 (1949 a).PubMedCrossRefGoogle Scholar
  41. Sawyer, C.H., Everett, J. W., Markee, J.E.: A neural factor in the mechanism by which estrogen induces the release of luteinizing hormone in the rat. Endocrinology 44, 218–233 (1949b).PubMedCrossRefGoogle Scholar
  42. Scapagnini, U., van Loon, G.R., Moberg, G.P., Preziosi, P., Ganong, W.F.: Evidence for central norepinephrine-mediated inhibition of ACTH secretion in the rat. Neuroendo-crinology 10, 155–160 (1972).CrossRefGoogle Scholar
  43. Schneider, H. P. G., McCann, S.M.: Mono- and indolamines and control of LH secretion. Endocrinology 86, 1127–1133 (1970).PubMedCrossRefGoogle Scholar
  44. Taleisnik, S., Tomatis, M.E., Celis, M.E.: Rôle of catecholamines in the control of melanocyte-stimulating hormone secretion in rats. Neuroendocrinology 10, 235–245 (1972).PubMedCrossRefGoogle Scholar
  45. Valverde, R., Chieffo, V., Reichlin, S.: Prolactin-releasing factor in porcine and rat hypothalamic tissue. Endocrinology 91, 982–993 (1972).PubMedCrossRefGoogle Scholar
  46. Velasco, M.E., Taleisnik, S.: Release of gonadotropins induced by amygdaloid stimulation in the rat. Endocrinology 84, 132–139 (1969).PubMedCrossRefGoogle Scholar
  47. Zarrow, M.X., Quinn, D.L.: Superovulation in the immature rat following treatment with PMS alone and inhibition of PMS-induced ovulation. J. Endocr. 26, 181–188 (1963).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • W. Lichtensteiger
    • 1
    • 2
  1. 1.Department of PharmacologyUniversity of ZürichZürichSwitzerland
  2. 2.Pharmakologisches InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations