Skip to main content

Hematolymphopoietic and Associated Cytokines in Neural Development

  • Chapter
Neuroimmunodegeneration

Abstract

Ithas become increasingly apparent that many of the same factors regulate development of both the nervous and hematolymphoid systems. Members of two cytokine superfamilies, the hemopoietins and the transforming growth factor βs (TGFβs), and the more recently characterized glial cell-derived neurotrophic factor (GDNF) family, mediate a complementary range of developmental events in the nervous system that frequently exceed those mediated by the classic neurotrophins (Table 1.1). These cytokine families, which are active in hematolymphoid development, are also involved in neurulation, dorsoventral patterning of the neural tube, and in the progressive evolution of the mammalian central and peripheral nervous systems. Recent studies have begun to characterize the detailed receptor subunit organization and the intracellular signaling pathways utilized by these growth factor families, the specific environmental contexts in which they act and the range of cellular processes by which they orchestrate the progressive sculpting of the developing nervous system. In addition, several experimental investigations have presented provocative evidence suggesting a role for these cytokines in modulating a range of developmental events through bidirectional communications between the hematolymphoid and neural systems.1−4 These diverse cytokines exhibit significant functional redundance and pleiotropy, especially during brain development; thus, targeted knockouts of cytokine signaling components generally demonstrate few central nervous system deficits, although there are often significant developmental abnormalities in the peripheral nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mori H, Tanaka R, Yoshida K et al. Immunological analysis of the rats with anterior hypothalamic lesions. J Neuroimmunol 1993; 48: 45–52.

    Article  PubMed  CAS  Google Scholar 

  2. Gushchin GV, Jakavleva EE, Kataeva GV et al. Muscarinic cholinergic receptors of rat lymphocytes: Effect of antigen stimulation and local brain lesion. Neuroimmunomod 1994; 1259–264.

    Google Scholar 

  3. Heninger GR. Neuroimmunology of stress. In: Friedman MJ, Charnry DS, Deutch AY, eds. Neurobiological and Clinical Consequences of Stress: From Normal Adaptation to PTSD. Philadelphia: Lippincott-Raven Publishers, 1995: 381–401.

    Google Scholar 

  4. Felten DL, Cohen N, Ader R et al. Central circuits involved in neural-immune interactions. In: Ader R, Felten DL, Cohen N, eds. Psychoneuroimmunology, 2nd ed. New York: Academic Press Inc., 1991: 3–25.

    Google Scholar 

  5. Hogan BLM. Bone morphogenetic proteins: Multifunctional regulators of vertebrate development. Genes Develop 1996; 1o: 158o - 1984.

    Google Scholar 

  6. Kingsley DM. The TGF-beta superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes Develop 1994; 8: 133–146.

    Article  PubMed  CAS  Google Scholar 

  7. Mehler MF, Kessler JA. Cytokines and neuronal differentiation. Crit Rev Neurobiol 1995; 9: 419–446.

    PubMed  CAS  Google Scholar 

  8. Tanabe Y, Jessell TM. Diversity and pattern in the developing spinal cord. Science 1996; 274: 1115–1123.

    Article  PubMed  CAS  Google Scholar 

  9. Graham A, Koentges G, Lumsden A. Neural crest apoptosis and the establishment of craniofacial pattern: An honorable death. Mol Cell Neurosci 1996; 8: 76–83.

    Article  CAS  Google Scholar 

  10. Massague J. TGF beta signaling: Receptors, transducers, and Mad proteins. Cell 1996; 85947–95o.

    Google Scholar 

  11. Wozney JM, Rosen V, Celeste AJ et al. Novel regulators of bone formation. Science 1988; 242: 1528–1534.

    Article  PubMed  CAS  Google Scholar 

  12. Lecuit T, Brook WJ, Ng M et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 1996; 381: 387–393.

    Article  PubMed  CAS  Google Scholar 

  13. Hemmati-Brivanlou A, Melton D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 1997; 88: 13–17.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson PA, Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by BMP4. Nature 1995; 376: 331–333.

    Article  PubMed  CAS  Google Scholar 

  15. Hemmati-Brivanlou A, Melton DA. Inhibition of activin receptor signaling promotes neuralization of Xenopus. Cell 1994; 77: 273–281.

    Article  PubMed  CAS  Google Scholar 

  16. Lemaire P, Kodjabachian L. The vertebrate organizer: Structure and molecules. Trends Genet 1996; 12525–531.

    Google Scholar 

  17. Piccolo S, Sasai Y, Lu B et al. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP4. Cell 1996; 86: 589–598.

    Article  PubMed  CAS  Google Scholar 

  18. Zimmerman LB, DeJesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996; 86: 599–606.

    Article  PubMed  CAS  Google Scholar 

  19. Holley SA, Neul JL, Attisano L et al. The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing Dpp from activating its receptor. Cell 1996; 86: 607–617.

    Article  PubMed  CAS  Google Scholar 

  20. Hemmati-Brivanlou A, Kelley OG, Melton DA. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 1994; 77: 283–295.

    Article  PubMed  CAS  Google Scholar 

  21. Lumsden A, Krumlau FR. Patterning the vertebrate neuraxis. Science 1996; 274: 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  22. Liem KF, Tremml G, Roelink H et al. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ecoderm. Cell 1995; 82969–979.

    Google Scholar 

  23. Winnier G, Blessing M, Labosky PA et al. Bone morphogenetic protein 4 is required for mesoderm formation and patterning in the mouse. Genes Develop 1995; 9: 2105–2116.

    Article  PubMed  CAS  Google Scholar 

  24. Roelink H. Tripartite signaling of pattern: Interactions between Hedgehogs, BMPs and Wnts in the control of vertebrate development. Curr Opin Neurobiol 1996; 6: 33–40.

    Article  PubMed  CAS  Google Scholar 

  25. Biehs B, Francois V, Bier E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Develop 1996; 10: 2922–2934.

    Article  PubMed  CAS  Google Scholar 

  26. Mehler MF, Kessler JA. Stem cells and neural development. In: Adelman G, Smith B, Eds. Encyclopedia of Neuroscience. Amsterdam: Elsevier Science (in press).

    Google Scholar 

  27. Weiss S, Reynolds BA, Vescovi A et al. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 1996; 19: 387–393.

    Google Scholar 

  28. Richards LJ, Kilpatrick TJ, Dutton R et al. Leukemia inhibitory factor or related factors promotes the differentiation of neuronal and astrocytic precursors within the developing murine spinal cord. Eur J Neurosci 1996; 5: 291–300.

    Article  Google Scholar 

  29. Pfeiffer SE, Warrington AE, Bansal R. Oligodendrocyte and its many cellular processes. Trends Cell Biol 1993; 3: 191–198.

    Article  PubMed  CAS  Google Scholar 

  30. Barres BA, Schmid R, Sendtner M et al. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 1993; 8: 283–295.

    Google Scholar 

  31. Louis J-C, Muir D, Varon S. Autocrine inhibition of mitotic activity in cultured oligodendrocyte-type 2 astrocyte (O-2A) precursor cells. GLIA 1992; 6: 30–38.

    Article  PubMed  CAS  Google Scholar 

  32. McKinnon RD, Piras G, Ida JA et al. A role for TGF-beta in oligodendrocyte differentiation. J Cell Biol 1993; 121: 1397–1407.

    Article  PubMed  CAS  Google Scholar 

  33. Van Meir EG. Cytokines and tumors of the central nervous system. GLIA 1995; 15: 264–288.

    Article  Google Scholar 

  34. Marmur R, Mehler MF, Mabie PC et al. Characterization of pre-O2A progenitor cultures from mouse embryonic subventricular zone progenitor cells. Soc Neurosci Abstr 1995; 21: 287.

    Google Scholar 

  35. Mehler MF, Marmur R, Gross RE et al. Cytokines regulate the cellular phenotype of developing neural lineage species. Int J Develop Neurosci 1995; 13: 213–240.

    Article  CAS  Google Scholar 

  36. Gross RE, Mehler MF, Mabie PC et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 1996; 17: 595–606.

    Article  PubMed  CAS  Google Scholar 

  37. Franklin RJM, Blakemore WF. Glial-cell transplantation and plasticity in the 0–2A lineage-implications for CNS repair. Trends Neurosci 1995; 18: 151–156.

    Article  PubMed  CAS  Google Scholar 

  38. Mabie PC, Mehler MF, Marmur R et al. Oligodendroglial and astroglial differentiation during development and remyelination. Ann Neurol 1996; 40546.

    Google Scholar 

  39. Giesen K, Hummel T, Stollework A et al. Glial development in the Drosophila CNS requires concomitant activation of glial and repression of neuronal differentiation genes. Development 1997; 124: 23078–2311.

    Google Scholar 

  40. Edwards MA, Yamamoto M, Caviness VS. Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience 1990; 36: 121–144.

    Article  Google Scholar 

  41. Mehler MF, Mabie PC, Marmur R et al. Differential regulation of radial glia and astroglial lineage elaboration from embryonic subventricular zone progenitor cells by leukemia inhibitory factor receptor activation and bone morphogenetic proteins. Soc Neurosci Abst 1996; 22: 285.

    Google Scholar 

  42. Mehler MF, Rozental R, Dougherty M et al. Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 1993; 362: 62–65.

    Article  PubMed  CAS  Google Scholar 

  43. Keegan AD, Nelms K, Wang L-M et al. Interleukin 4 receptor: Signaling mechanisms. Immunology Today 1994; 14: 423–432.

    Article  Google Scholar 

  44. Mabie PC, Mehler MF, Marmur R et al. The developmental neurotrophic potential of an interleukin subset that regulates hematolymphoid development and signals through a common gamma receptor subunit. Neurology 1995; 45: A335.

    Google Scholar 

  45. Motro B, Van der Kooy D, Rossant J et al. Contiguous patterns of c-kit and steel expression: Analysis of mutations at the W and SI loci. Development 1991; 113: 1207–1221.

    PubMed  CAS  Google Scholar 

  46. Michaelson MD, Bieri P, Mehler MF et al. CSF1 deficiency in mice results in abnormal brain development. Development 1996; 122: 2661–2672.

    PubMed  CAS  Google Scholar 

  47. Michaelson MD, Mehler MF, Xu H et al. Interleukin 7 is trophic for embryonic neurons and is expressed in developing brain. Develop Biol 1996; 179: 251–263.

    Article  PubMed  CAS  Google Scholar 

  48. Du X, Stull ND, lacovitti L. Brain-derived neurotrophic factor works coordinately with partner molecules to initiate tyrosine hydroxylase expression in striatal neurons. Brain Res 1995; 680: 229–233.

    Article  PubMed  CAS  Google Scholar 

  49. Kato AC, Lindsay RM. Overlapping and additive effects of neurotrophins and CNTF on cultured human spinal cord neurons. Exp Neurol 1994; 130: 196–210.

    Article  PubMed  CAS  Google Scholar 

  50. Michikawa M, Kikuchi S, Kim SU. Leukemia inhibitory factor-mediated increase of choline acetyltransferase activity in mouse spinal cord neurons in culture. Neurosci Lett 1992; 140: 75–77.

    Article  PubMed  CAS  Google Scholar 

  51. Kamegai M, Niijima K, Kunishita T et al. Interleukin 3 as a trophic factor for central cholinergic neurons in vitro and in vivo. Neuron 1990; 2: 429–436.

    Article  Google Scholar 

  52. Konishi Y, Chui D, Hirose H et al. Trophic effects of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res 1993; 609: 29–35.

    Article  PubMed  CAS  Google Scholar 

  53. Tabira T, Konishi Y, Gallyas F Jr. Neurotrophic effect of hematopoietic cytokines on cholinergic and other neurons in vitro. Int J Dev Neurosci 1995; 13: 241–252.

    Article  PubMed  CAS  Google Scholar 

  54. Henderson CE. Role of neurotrophin factors in neural development. Curr Opin Neurobiol 1996; 6: 64–70.

    Article  PubMed  CAS  Google Scholar 

  55. Snyder SH, Sabatini DM. Immunophilins in the nervous system. Nature Med 1995; 1: 32–37.

    Article  PubMed  CAS  Google Scholar 

  56. Gottschalk AR, Boise LH, Thompson CB et al. Identification of immunosuppressant-induced apoptosis in murine B-cell line and its prevention by bcl-x but not bc1–2. Proc Natl Acad Sci USA 1994; 91: 7350–7354.

    Article  PubMed  CAS  Google Scholar 

  57. Plata-Salaman CR. Immunoregulators in the nervous system. Neurosci Biobehav Rev 1991; 15: 185–215.

    Article  PubMed  CAS  Google Scholar 

  58. Pliophys AV. Expression of the 210 kDa neurofilament subunit in cultures of nervous system from normal and trisomy 16 mice: Regulation by interferon. J Neurosci 1988; 85: 209–222.

    Google Scholar 

  59. Barish M, Mansdorf NB, Raissdana SS. Gamma-interferon promotes differentiation of cultures cortical and hippocampal neurons. Develop Biol 1991; 144412–423.

    Google Scholar 

  60. Erkman L, Wuarin L, Cadelli D et al. Interferon induces astrocyte maturation causing an increase in cholinergic properties of cultured spinal cord cells. Develop Biol 1989; 132375–388.

    Google Scholar 

  61. Patterson PH. The emerging neuropoietic cytokine family: First CDF/ LIF, CNTF and IL-6; next ONC, MGF, GCSF? Curr Opin Neurobiol 1992; 294–97.

    Google Scholar 

  62. Campfield LA, Smith FJ, Guisez Y et al. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 1995; 269546–549.

    Google Scholar 

  63. Gainsford T, Wilson T, Metcalf D et al. Leptin can induce proliferation, differentiation and functional activation of hematopoietic cells. Proc Natl Acad Sci USA 1996; 93: 14564–14568.

    Article  PubMed  CAS  Google Scholar 

  64. Bennett BD, Solar GP, Yuan JQ et al. A role for leptin and its cognate receptor in hematopoiesis. Curr Biol 1996; 6: 1170–1180.

    Article  PubMed  CAS  Google Scholar 

  65. Cioffi JA, Shafer AW, Zupancic TJ et al. Novel B219/0B receptor isoforms: Possible role of leptin in hematopoiesis and reproduction. Nature Med 1996; 2585–589.

    Google Scholar 

  66. Langtimim-Sedlak CJ, Schroeder B, Saskowski JL et al. Multiple actions of stem cell factor in neural crest differentiation in vitro. Develop Biol 1996; 174: 345–359.

    Article  Google Scholar 

  67. Groves A, Anderson DJ. Role of environmental signals and transcriptional regulators in neural crest development. Develop Genet 1996; 18: 64–72.

    Article  CAS  Google Scholar 

  68. Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGF beta superfamily members. Cell 1996; 85: 331–343.

    Article  PubMed  CAS  Google Scholar 

  69. Shah NM, Marchionni MA, Isaacs I et al. Glial growth factor restricts mammalian neural crest cells to a glial fate. Cell 1994; 77349–360.

    Google Scholar 

  70. Reissmann E, Ernsberger U, Francis-West PH et al. Involvement of bone morphogenetic protein 4 and bone morphogenetic protein 7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 1996; 122: 2079–2088.

    PubMed  CAS  Google Scholar 

  71. Varley JE, Wehby RG, Rueger DL et al. Number of adrenergic and islet-1 immunoreactive cells is increased in avian trunk neural crest cultures in the presence of human recombinant osteogenic protein-1. Develop Dynamics 1995; 203: 434–447.

    Article  CAS  Google Scholar 

  72. Varley JE, Maxwell GD. BMP-2 and BMP-4, but not BMP-6, increase the number of adrenergic cells which develop in quail trunk neural crest cultures. Exp Neurol 1996; 140: 84–94.

    Article  PubMed  CAS  Google Scholar 

  73. Fann M-J, Patterson PH. Depolarization differentially regulates the effects of bone morphogenetic protein (BMP)-2, BMP-6 and activin A on sympathetic neuronal phenotype. J Neurochem 1994; 63: 2074–2079.

    Article  PubMed  CAS  Google Scholar 

  74. Lein P, Johnson M, Guo X et al. Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 1995; 15: 597–605.

    Article  PubMed  CAS  Google Scholar 

  75. Ip NY, Boulton TG, Li Y et al. CNTF, FGF and NGF collaborate to drive the terminal differentiation of MAH cells into postmitotic neurons. Neuron 1994; 13: 443–455.

    Google Scholar 

  76. Improta T, Salvatore AM, DiLuzio A et al. IFN gamma facilitates NGF-induced neuronal differentiation in PC12 cells. Exper Cell Res 1988; 179: 1–9.

    Article  CAS  Google Scholar 

  77. Wu YY, Bradshaw RA. Induction of neurite outgrowth by interleukin-6 is accompanied by activation of STAT3 signaling pathway in a variant PC12 cell (E2) line. J Biol Chem 1996; 271: 13023–13032.

    Article  PubMed  CAS  Google Scholar 

  78. Murphy M, Reid K, Hilton DJ et al. Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc Natl Acad Sci USA 1991; 99: 3498–3501.

    Article  Google Scholar 

  79. Bamber BA, Masters BA, Hoyle GW et al. Leukemia inhibitory factor induces neurotransmitter switching in transgenic mice. Proc Natl Acad Sci USA 1994; 91: 7839–7843.

    Article  PubMed  CAS  Google Scholar 

  80. Rao MS, Symes A, Malik N et al. Oncostatin M regulates VIP expression in a human neuroblastoma cell linè. NeuroReport 1992; 3: 865–868.

    Article  PubMed  CAS  Google Scholar 

  81. Kessler JA, Ludlam WH, Freidin MM et al. Cytokine-induced programmed death of cultures sympathetic neurons. Neuron 1993; 11: 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  82. Chang JY, Martin DP, Johnson FM et al. Interferon suppresses sympathetic neuronal cell death caused by nerve growth factor deprivation. J Neurochem 1990; 55: 436–445.

    Article  PubMed  CAS  Google Scholar 

  83. Patterson PH. Neuronal growth and differentiation factors and synaptic plasticity. In: Bloom FE, Kupfer DJ, Eds. Psychopharmacology: The Fourth Generation of Progress, New York: Raven Press, 619–629.

    Google Scholar 

  84. Fann M-J, Patterson PH. Neuropoietic cytokines and activin A differentially regulate the phenotype of cultured sympathetic neurons. Proc Natl Acad Sci USA 1994; 91: 43–47.

    Article  PubMed  CAS  Google Scholar 

  85. Olsson T. Cytokines in neuroinflammatory disease: Role of myelin autoreactive T cell production of interferon-gamma. J Neuroimmunol 1992; 40: 211–218.

    Article  PubMed  CAS  Google Scholar 

  86. Masuda S et al. Functional erythropoietin receptor of the cells with neural characteristics. J Biol Chem 1993; 268: 11208–11216.

    PubMed  CAS  Google Scholar 

  87. Graham A, Francis-West P, Brickell P et al. The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 1994; 387: 684–686.

    Article  Google Scholar 

  88. Marazzi G, Wang, Y, Sassoon D. Msx2 is a transcriptional regulator in the BMP4-mediated programmed cell death pathway. Develop Biol 1997; 186: 127–138.

    Google Scholar 

  89. Furuta Y, Piston DW, Hogan BL. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1997; 124: 2203–2212.

    PubMed  CAS  Google Scholar 

  90. Soderstrom S, Bengtsson H, Ebendahl T. Expression of serine/threonine kinase receptors including the bone morphogenetic factor type II receptor in the developing and adult rat brain. Cell Tissue Res 1996; 286: 269–279.

    Article  PubMed  CAS  Google Scholar 

  91. Paralkar VM, Weeks BS, Yu Y et al. Recombinant human bone morphogenetic protein 2B stimulates PC12 cell differentiation: Potentiation and binding to type IV collagen. J Cell Biol 1992; 119: 1721–1728.

    Article  PubMed  CAS  Google Scholar 

  92. Mabie PC, Mehler MF, Kessler JA. Effects of bone morphogenetic protein 2 on rat embryonic ventral mesencephalon in vitro. Soc Neurosci Abstr 1994; 20: 665.

    Google Scholar 

  93. Beck KD, Valverde J, Alexi T et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 1995; 373: 339–341.

    Article  PubMed  CAS  Google Scholar 

  94. Poulsen KT, Armanini MP, Klein RD et al. TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 1994; 13: 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  95. Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-i signalling. Cell 1994; 77: 325–328.

    Article  PubMed  CAS  Google Scholar 

  96. Armitage RJ. Tumor necrosis factor receptor superfamily members and their ligands. Curr Opin Immunol 1994; 6: 407–413.

    Article  PubMed  CAS  Google Scholar 

  97. Squier MKT, Cohen JJ. Cell-mediated cytotoxic mechanisms. Curr Opin Immunol 1994; 6: 447–452.

    Article  PubMed  CAS  Google Scholar 

  98. Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation and death. Cell 1994; 76: 959–962.

    Google Scholar 

  99. Heller RA, Kronke M. Tumor necrosis factor receptor-mediates signaling pathways. J Cell Biol 1994; 126: 5–9.

    Article  PubMed  CAS  Google Scholar 

  100. Bartfai T, Schultzberg M. Cytokines in neuronal cell types. Neurochem Int 1993; 22: 435–444.

    Article  PubMed  CAS  Google Scholar 

  101. Ju S-T, Panka DJ, Cui H et al. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995; 373: 444–448.

    Article  PubMed  CAS  Google Scholar 

  102. Brunner T, Mogil RJ, LaFace D et al. Cell-autonomous Fas (CD95)/ Fas ligand interactions mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995; 373: 441–444.

    Google Scholar 

  103. Dhein J, Walczak H, Baumler C et al. Autocrine T-cell suicide mediated by APO- 1/(Fas/CD95). Nature 1995; 373: 438–441.

    Article  PubMed  CAS  Google Scholar 

  104. Strasser A. Death of a T cell. Nature 1995; 373: 385–386.

    Article  PubMed  CAS  Google Scholar 

  105. Kagi D, Vignaux F, Ledermann B et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265: 528–530.

    Article  PubMed  CAS  Google Scholar 

  106. Matsuyama T, Hata R, Tagaya M et al. Fas antigen mRNA induction in postischemic murine brain. Brain Res 1994; 657: 342–346.

    Article  PubMed  CAS  Google Scholar 

  107. Lindsay RM, Yancopoulos GD. GDNF in a bind with known orphan: Accessory implicated in new twist. Neuron 1996; 17: 571–574.

    Article  PubMed  CAS  Google Scholar 

  108. Unsicker, K. GDNF: A cytokine at the interface of TGF-(3 and neurotrophins. Cell Tissue Res 1996; 286: 175–178.

    Article  PubMed  CAS  Google Scholar 

  109. Nosrat CA, Tomac A, Linguist E et al. Cellular expression of GDNF mRNA suggests multiple functions inside and outside the nervous system. Cell Tissue Res 1996; 286: 191–207.

    Article  PubMed  CAS  Google Scholar 

  110. Kotzbauer PT, Lampe PA, Heukeroth RO et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 1996; 384: 467–470.

    Article  PubMed  CAS  Google Scholar 

  111. Baloh RH, Tansey MG, Golden JP et al. TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron 1997; 18: 793–802.

    Article  PubMed  CAS  Google Scholar 

  112. Klein RD, Sherman D, Ho W-H. A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature 1997; 387: 717–721.

    Article  PubMed  CAS  Google Scholar 

  113. Buj-Bello A, Adu J, Pinon LGP et al. Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. Nature 1997; 387: 721–724.

    Article  PubMed  CAS  Google Scholar 

  114. Gattei V, Celetti A, Cerrato A et al. Expression of the Ret receptor tyrosine kinase and GDNFR-alpha in normal and leukemic human hematopoietic cells and stromal cells of the bone marrow microenvironment. Blood 1997; 89: 2925–2937.

    PubMed  CAS  Google Scholar 

  115. Maxwell GD, Reid K, Elefanty A et al. Glial cell line-derived neurotrophic factor promotes the development of adrenergic neurons in mouse neural crest cultures. Proc Natl Acad Sci USA 1996; 93: 13274–13279.

    Article  PubMed  CAS  Google Scholar 

  116. Keshet E, Lyman SD, Williams DE et al. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J 1991; 10: 2425–2435.

    PubMed  CAS  Google Scholar 

  117. Morii E, Hirota S, Kim H-M et al. Spatial expression of genes encoding c-kit receptors and their ligands in mouse cerebellum as revealed by in situ hybridization. Dev Brain Res 1992; 65: 123–129.

    Article  CAS  Google Scholar 

  118. Orr-Urteger A, Aviv A, Zimmer Y et al. Developmental expression of c-kit, a protooncogene encoded by the W locus. Development 199o; 109: 911–923.

    Google Scholar 

  119. Stahl N, Yancopoulos GD. The alphas, betas and kinases of cytokine receptor complexes. Cell 1993; 7: 587–590.

    Article  Google Scholar 

  120. DeChiara TM, Vejada R, Poveymirou WT et al. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 1995; 83: 313–322.

    Article  PubMed  CAS  Google Scholar 

  121. Finch CE, Laping NJ, Morgan TE et al. TGF-beta 1 is an organizer of responses to neurodegeneration. J Cell Biochem 1993; 53: 314–322.

    Article  PubMed  CAS  Google Scholar 

  122. Chalazonitis A, Kalberg J, Twardzik DR et al. Transforming growth factor ß has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Develop Biol 1992; 152: 121–132.

    Article  PubMed  CAS  Google Scholar 

  123. Flanders KC, Ludecke G, Engels S et al. Localization and actions of transforming growth factor-beta in the embryonic nervous system. Development 1991; 113: 183–191.

    PubMed  CAS  Google Scholar 

  124. Mabie PC, Mehler MF, Papavasiliou AK et al. Distinct cellular targets of the bone morphogenetic proteins in neural development. Soc Neurosci Abstra 1995; 21: 1542.

    Google Scholar 

  125. Schluesener HJ, Meyermann R. Expression of BMP-6, a TGF(3 related morphogenetic cytokine, in rat radial glia. GLIA 1994; 12: 161–164.

    Article  PubMed  CAS  Google Scholar 

  126. Tomizawa K, Matsui H, Kondo E et al. Developmental alterations and neuron-specific expression of bone morphogenetic protein-6 mRNA in rodent brain. Mol Brain Res 1995; 28: 122–128.

    Article  PubMed  CAS  Google Scholar 

  127. DeWulf N, Verschueren K, Lonnoy O et al. Distinct spatial and temporal expression patterns of two type I receptors for bone morpho-genetic proteins during mouse embryogenesis. Endocrinology 1995; 136: 2652–2663.

    Article  PubMed  CAS  Google Scholar 

  128. Mishini Y, Suzuki A, Ueno N et al. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Develop 1995; 93027–3037.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehler, M.F., Kessler, J.A. (1998). Hematolymphopoietic and Associated Cytokines in Neural Development. In: Wong, P.K.Y., Lynn, W.S. (eds) Neuroimmunodegeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12579-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12579-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12581-6

  • Online ISBN: 978-3-662-12579-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics