Skip to main content
  • 83 Accesses

Zusammenfassung

Für das Monitoring während neurochirurgischer Eingriffe müssen die Besonderheiten, welche sich durch die spezielle funktionelle und strukturelle Beschaffenheit des zentralen sowie peripheren Nervensystems ergeben, berücksichtigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adornato DC, Gildenberg PL, Ferrario CM, Smart J, Frost EAM (1978) Pathophysiology of intravenous air embolism in dogs. Anesthesiology 49: 120–127

    Article  PubMed  CAS  Google Scholar 

  2. Bickford RG, Billinger TW, Flemming N, Stewart L (1972) The compressed spectral array (CSA). A pictorial EEG. Proc San Diego Biomed Symp 11: 365–370

    Google Scholar 

  3. Brandt L, Erdmann K (1988) Beeinflussung des Elektroenzephalogramms durch Anästhetikakombinationen-die Bedeutung des Lachgases. In: Brandt L (Hrsg) Cerebrales Monitoring in der Anästhesie. Bibliomed, Melsungen, S 151–172

    Google Scholar 

  4. Brechner TM, Brechner VL (1977) An audible alarm for monitoring air embolism during neurosurgery. J Neurosurg 47: 201–204

    Article  PubMed  CAS  Google Scholar 

  5. Demetrescu M (1975) The aperiodic character of the electroencephalogram (EEG): A new approach to data analysis and condensation. Physiologist 18: 189

    Google Scholar 

  6. Dinkel M, Kamp HD, Schweiger H (1991) Somatosensorisch evozierte Potentiale in der Karotischirurgie. Anaesthesist 40: 72–78

    PubMed  CAS  Google Scholar 

  7. Fleming RA, Smith NTY (1979) Density modulation-a technique for the display of three-variable data in patient monitoring. Anesthesiology 50: 543–546

    Article  PubMed  CAS  Google Scholar 

  8. Furnya H, Suzuti T, Okumura F, Kischi G, Defuji T (1983) Detection of air embolism by transesophageal echocardiography. Anesthesiology 58: 124–129

    Article  Google Scholar 

  9. Gässeln HH, Samii M, Suhr D, Bini W (1991) The lounging position for posterior fossa surgery: anesthesiological considerations regarding air embolism. Child’s Nerv Syst 7: 368–374

    Article  Google Scholar 

  10. Ghaly RF, Stone JL, Levy WJ, Kartha R, Aldrete JA (1990) The effect of nitrous oxide on transcranial magnetic-induced electromyographic responses in the monkey. J Neurosurg Anesthesiol 2: 175–181

    Article  PubMed  CAS  Google Scholar 

  11. Gildenberg PL, O’Brien RP, Britt WJ, Frost EAM (1981) The efficiency of Doppler monitoring for the detection of venous air embolism. J Neurosurg 54: 75–78

    Article  PubMed  CAS  Google Scholar 

  12. Grundy BL (1983) Intraoperative monitoring of sensory evoked potentials. Anesthesiology 58: 72–87

    Article  PubMed  CAS  Google Scholar 

  13. Kochs E (1991) Zerebrales Monitoring. Anästhesiol Intensivmed Notfallmed Schmerzther 26: 363–374

    Article  PubMed  CAS  Google Scholar 

  14. Lam AM, Manninen PH, Ferguson GG, Nantau W (1991) Monitoring electrophysiologic function during carotid endarterectomy: A comparison of somatosensory evoked potentials and conventional electroencephalogram. Anesthesiology 75: 15–21

    Google Scholar 

  15. Legatt AD (1991) Intraoperative neurophysiologic monitoring. In: Frost AM (ed) Clinical anesthesia in neurosurgery. Butterworth-Heinemann, Boston London Singapore, pp 63–127

    Google Scholar 

  16. Litscher G (1994) Multivariable nicht-invasive Intensivüberwachung. Neue computergestützte Verfahren. Fischer, Stuttgart New York

    Google Scholar 

  17. Maynard D, Prior PF, Scott DF (1969) Device for continuous monitoring of cerebral activity in resuscitated patients. Br Med J: 545–546

    Google Scholar 

  18. Paul WL, Munson ES (1981) Monitoring of endtidal carbon dioxide to detect venous air embolism. Br J Anesth 53: 313–314

    Google Scholar 

  19. Pfenninger E (1994) Die Messung des intrakraniellen Druckes. In: Rügheimer E, Dinkel M (Hrsg) Neuromonitoring in der Anästhesie und Intensivmedizin. Springer, Berlin Heidelberg New York Tokyo, S 85–103

    Chapter  Google Scholar 

  20. Pichlmayr I, Lips U, Kunkel H (1983) Das Elektroenzephalogramm in der Anästhesie-Grundlagen, Anwendungsbereiche, Beispiele. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  21. Raudzens PA (1982) Intraoperative monitoring of evoked potentials. Ann NY Acad Sci 388: 308–322

    Article  PubMed  CAS  Google Scholar 

  22. Russ W, Thiel A, Gerlach H, Hempelmann G (1985) Die Wirkung von Lachgas und Halothan auf somatosensorisch evozierte Potentiale nach Stimulation des Nervus medianus. Anästh Intensivther Notfallmed 20: 186–192

    Article  PubMed  CAS  Google Scholar 

  23. Schramm J, Zentner J (1994) Neurophysiologisches Monitoring bei intrakraniellen und spinalen Eingriffen. In: Rügheimer E, Dinkel M (Hrsg) Neuromonitoring in der Anästhesie und Intensivmedizin. Springer, Berlin Heidelberg New York Tokyo, S 156–173

    Chapter  Google Scholar 

  24. Schramm J, Tamiguchi M (1991) Value of stable and changing somatosensory evoked potentials (SSEP) during aneurysm surgery. In: Schramm J, Moller AR (eds) Intra-operative neurophysiologic monitoring in neurosurgery. Springer, Berlin Heidelberg New York, pp 151–161

    Chapter  Google Scholar 

  25. Schregel W (1994) Die Bedeutung der transkraniellen Dopplersonographie als nicht-invasives Untersuchungsverfahren in Anästhesie und Intensivmedizin. In: Rügheimer E, Dinkel M (Hrsg) Neuromonitoring in der Anästhesie und Intensivmedizin. Springer, Berlin Heidelberg New York Tokyo, S 104–110

    Chapter  Google Scholar 

  26. Severinghaus JW (1982) Air embolism detected by mass spectrometry. In: Hershey SG (ed) The sitting position. Lippincott, Philadelphia, p 63

    Google Scholar 

  27. Shapiro HM (1984) Monitoring in neurosurgical anesthesia. In: Saidman LJ, Smith NTY (eds) Monitoring in anesthesia. Butterworth, Boston London Sydney, pp 269–309

    Google Scholar 

  28. Unterberg A, Schneider GH, von Helden A, Lanksch WR (1994) Zerebrovenöse Oxymetrie. In: Rügheimer E, Dinkel M (Eds) Neuromonitoring in der Anästhesie und Intensivmedizin. Springer, Berlin Heidelberg New York Tokyo, S 74–81

    Chapter  Google Scholar 

  29. Ward R, Fliun T, Kelley JT, Reilly E, Handel S (1981) Electroencephalogram monitoring during carotid endarterectomy. J Cardiovasc Surg 22: 127–134

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwarz, G., Litscher, G. (1998). Neuroanästhesie. In: List, W.F., Metzler, H., Pasch, T. (eds) Monitoring in Anästhesie und Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12541-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12541-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12542-7

  • Online ISBN: 978-3-662-12541-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics