Skip to main content

Anästhesiegase: N2O und volatile Anästhetika

  • Chapter
Monitoring in Anästhesie und Intensivmedizin
  • 87 Accesses

Zusammenfassung

Das allgemeine Anliegen um höchstmögliche Patientensicherheit hat zu vermehrtem intraoperativen Einsatz zusätzlicher Überwachungsgeräte, speziell für O2-Sättigung und Atemgaskonzentrationen, geführt. Die Überwachung der inspiratorischen O2-Konzentration während der Narkose ist bereits seit etlichen Jahren verpflichtend, jene von CO2 wird nachdrücklichst empfohlen [21, 35] und wird in einigen europäischen Ländern bereits als Standard angesehen. Rechtliche Überlegungen [9] und Empfehlungen anästhesiologischer Fachgesellschaften mündeten darin, daß die Überwachung der Atemgaskonzentration der volatilen Anästhetika auch in der künftigen Europanorm für Anästhesiearbeitsplätze [3] verbindlich festgeschrieben sein wird (angemerkt sei, daß „internationale Standards“ [21] nicht zur kontinuierlichen Überwachung der Anästhesiegase verpflichten). Der ökologisch und ökonomisch begrüßenswerte Trend zur Low-flow-Technik wird vermehrt dazu beitragen, daß Analysatoren zur fortlaufenden Konzentrationsbestimmung der volatilen Anästhetika immer häufiger am Anästhesiearbeitsplatz anzutreffen sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abel M, Eisenkraft JB (1995) Erroneous mass spectrometer readings caused by desflurane and sevoflurane. J Clin Monit 11 (3): 152–158

    Article  PubMed  CAS  Google Scholar 

  2. Ackern K van, Frankenberger H, Konecny E, Steinbereithner K (1989) (eds) Quantitative anaesthesia. Anaesthesiologie und Intensivmedizin, 204. Springer, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  3. Anaesthetic workstations and their modules. Particular requirements. Europanorm EN 740: Europäisches Komittee für Normung. CEN/TC215/WG1. CEN-Zentralsekretariat, rue de Stassart 36, B-1050 Brüssel

    Google Scholar 

  4. Allison JM, Gregory RS, Birch KP, Crowder JG (1995) Determination of anaesthetic agent concentration by refractometry. Br J Anaesth 74: 85–88

    Article  PubMed  CAS  Google Scholar 

  5. Baras E, Deriaz H, Lienhart A (1992) Monochromatic infrared halogenated gas analyzer and handling errors. Ann Fr Anesth Reanim 11: 43–47

    Article  PubMed  CAS  Google Scholar 

  6. Batey JH (1987) Quadrupole gas analysers. Vacuum 37: 659–668

    Article  CAS  Google Scholar 

  7. Beatty PCW (1988) The Spectralab-M quadrupole medical mass spectrometer. J Med Engin Technol 12: 265–272

    Article  CAS  Google Scholar 

  8. Bickler PE, Sohn YJ (1992) Mass spectrometers and infrared gas analyzers interpret bronchodilator propellants as anesthetic gases. Anesth Analg 75: 142–143

    Article  PubMed  CAS  Google Scholar 

  9. Cooper NG (1994) The measurement of anaesthetic gases–legal requirements. Br.J Theatre Nurs 3: 29–30

    PubMed  CAS  Google Scholar 

  10. Deriaz H, Baras E, Bunodiere M, Lienhart A (1997) Desflurane and erroneous vapour setting on the analyzer. Ann Fr Anesth Reanim 16: 304–306

    Article  PubMed  CAS  Google Scholar 

  11. Fowler KT (1969) The respiratory mass spectrometer. Phys Med Biol 14: 185–199

    Article  PubMed  CAS  Google Scholar 

  12. Gedeon A (1989) Anesthetic agent analysis-using piezoelectric microbalance. Biomed Instrum Technol 23: 493–495

    PubMed  CAS  Google Scholar 

  13. Gilly H (1989) Limitations of present dosing systems for gases and volatile anaesthetics. In: Van Ackern K, Frankenberger H, Konecny E, Steinbereithner K (eds) Quantitative anaesthesia. Anaesthesiologie und Intensivmedizin, Bd 204. Springer, Berlin Heidelberg New York Tokyo, 81–93

    Google Scholar 

  14. Gilly H, Steinbereithner K, Tobolik G, Watzek C (1986) Sicherheit durch Überwachung von Narkosegaskonzentrationen volatiler Anaesthetika. In: List WF, Bergmann H, Schalk HV (Hrsg) Anaesthesie im kleinen und mittleren Krankenhaus. Anaesthesiologie und Intensivmedizin Bd 192. Springer, Berlin Heidelberg New York Tokyo, S 145159

    Google Scholar 

  15. Gilly H (1993) OP-Raumluftkontamination in Wiener Spitälern In: Gilly H, Schulte am Esch J, Steinbereithner K, Winker N (Hrsg) (1993) Beiträge zur Anaesthesiologie, Intensiv-und Notfallmedizin. Bd 42: Gefahren der Narkosegasbelastung am Arbeitsplatz. Maudrich, Wien München Bern, S 101–112

    Google Scholar 

  16. Grabbet B, Scharmer EG, Siegel E (1997) Die neue Gasmeßbank IRIA–Narkosemittel sicher erkennen. Medizintechnik Aktuell 3 /97 S 12–15

    Google Scholar 

  17. Gravenstein JS, Paulus DA, Hayes TJ (1989) Capnography in clinical practice. Butterworth-Heinemann, Stoneham, p 142

    Google Scholar 

  18. Gravenstein JS, Gravenstein N, van der Aa J, Paulus DA (1984) Pitfalls with mass spectrometry in clinical anesthesia. Int J Clin Monit Comput 1: 27–33

    Article  PubMed  CAS  Google Scholar 

  19. Hall JE, Henderson KA, Oldham TA, Pugh S, Harmer M (1997) Environmental monitoring during gaseous induction with sevofluran. Br J Anaesth 79: 342–345

    Article  PubMed  CAS  Google Scholar 

  20. Huber E (1993) Gefährdung im OP-Bereich: Rechtliche Aspekte und MAK-Werte. In: Gilly H, Schulte am Esch J, Steinbereithner K, Winker N (Hrsg) Gefahren der Narkosegasbelastung am Arbeitsplatz. Beitr Anaesth Intensivmed Notfallmed 42: 69–76

    Google Scholar 

  21. International standards for a safe practice of anaesthesia (1993) Developed by The International Task Force on Anaesthesia Safety. Europ J Anaesthesiol 10 (Suppl 7): 12–15

    Google Scholar 

  22. Jantzen JP, Kleemann PP, Erdmann K, Hein HAT, Wallenfang T (1989) „Anestheticography“: on-line monitoring and documentation of inhalational anesthesia. Int J Clin Monit Comput 5: 71–74

    Google Scholar 

  23. Lauber R, Seeberger R, Zbinden M (1995) Carbon dioxide analysers: accuracy, alarm limits and effect of interfering gases. Can J Anaesth. 42 (7): 643–656

    Article  PubMed  CAS  Google Scholar 

  24. Lawson D, Samanta S, Magee PT, Gregonis DE (1993) Stability and long-term durability of Raman spectroscopy. J Clin Monit 9 (4): 241–251

    Article  PubMed  CAS  Google Scholar 

  25. Lockwood GG, Landon MJ, Chakrabarti MK, Whitwam JG (1994) The Ohmeda Rascal II. A new gas analyser for anaesthetic use. Anaesthesia 49: 44–53

    Google Scholar 

  26. Luft K (1943) Über eine neue Methode der registrierenden Gasanalyse mit Hilfe der Absorption ultraroter Strahlen ohne spektrale Zerlegung. Z Techn Phys 24: 97–102

    CAS  Google Scholar 

  27. Meier A, Jost M, Ruegger M, Knutti R, Schlatter C (1995) Narkosegasbelastung des Personals in der Kinderanästhesie. Anaesthesist 44 (3): 154–162

    Article  PubMed  CAS  Google Scholar 

  28. Matjasko J, Petrozza P, Mackenzie CF (1985) Sensitivity of end-tidal nitrogen in venous air embolism detection in dogs. Anesthesiology 63: 418–423

    Article  PubMed  CAS  Google Scholar 

  29. Mollgaard K (1989) Acoustic gas measurement. Biomed Instrum Technol 23: 495–497

    PubMed  CAS  Google Scholar 

  30. Morita S, Latta W, Hambro K, Snider MT (1985) Accumulation of methane, acetone and nitrogen in the inspired gas during closed-circuit anesthesia. Anesth Analg 64: 343346

    Google Scholar 

  31. Morrison JE, McDonald C (1993) Erroneous data from an infrared anesthetic gas analyser. J Clin Monit 9: 293–294

    Article  PubMed  Google Scholar 

  32. Nellcor (1990) Bedienungsanleitung für Nellcor N-1000E Multifunktionsmonitor and Nellcor N-2500E Anästhesie-Gas-Monitor

    Google Scholar 

  33. Nielsen J, Kann T, Moller JT (1993) Evaluation of three transportable multigas anesthetic agent monitors: Brüel & Kjaer anesthetic gas monitor 1304, the Datex Capnomac Ultima and the Nellcor N-2500. J Clin Monit 9: 91–98

    Article  PubMed  CAS  Google Scholar 

  34. Nielsen J, Pedersen FM, Knudsen F, Jensen MB, Ibsen M (1993) Accuracy of 94 anaesthetic agent vaporizers in clinical use. Br J Anaesth 71 (3): 453–457

    Article  PubMed  CAS  Google Scholar 

  35. OeGARI-Newsletter (1992) Empfehlungen der Österreichischen Gesellschaft für Anaesthesiologie, Reanimation and Intensivtherapie (ÖGARI) zur Überwachung des Patienten während der Narkose. ÖGARI Newsletter 10: 5

    Google Scholar 

  36. Otis AB (1964) Quantitative relationships in steady-state gas exchange. In: Fenn WO, Rahn H (eds) Handbook of physiology, Sect 3 Respiration, vol 1. American Physiologic Society, Washington pp 681–698

    Google Scholar 

  37. Ozanne GM, Young WG, Mazzei WJ, Severinghaus JW (1981) Multipatient anesthetic mass spectromery: rapid analysis of data stored in long catheters. Anesthesiology 55: 62–70

    Article  PubMed  CAS  Google Scholar 

  38. Pascucci RC, Schena JA, Thompson JE (1989) Comparison of a sidestream and mainstream capnometer in infants. Crit Care Med 17: 560–562

    Article  PubMed  CAS  Google Scholar 

  39. Pockrand I (1985) Optische Gasanalyse in der Medizin. Technisches Messen 52: 247–253

    CAS  Google Scholar 

  40. Roily G, Versichelen LF, Mortier E (1994) Methane accumulation during closed-circuit anesthesia. Anesth Analg 79: 545–547

    Article  Google Scholar 

  41. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten zur Microwägung. Z Physik 155: 206–209

    Article  CAS  Google Scholar 

  42. Scamman FL (1988) Accuracy of a central mass spectrometer system at high respiratory frequencies. J Clin Monit 4: 227–229

    Article  PubMed  CAS  Google Scholar 

  43. Scamman FL, Fishbaugh JK (1986) Frequency response of long mass-spectrometer sampling catheters. Anesthesiology 65: 422–425

    Article  PubMed  CAS  Google Scholar 

  44. Severinghaus JW (1987) Continuous monitoring of alveolar and inspiratory concentrations of anesthetic and respiratory gases is safe, simple and cost-effective. J Clin Monit 3: 123–127

    Article  PubMed  CAS  Google Scholar 

  45. Severinghaus JW (1989) Water vapor calibration errors in some capnometers: respiratory conventions misunderstood by manufacturers? Anesthesiology 70: 996–998

    Article  PubMed  CAS  Google Scholar 

  46. Severinghaus JW, Larson CP, Eger EI (1961) Correction factors for infrared carbon dioxide pressure broadening by nitrogen, nitrous oxide, and cyclopropane. Anesthesiology 22: 429–433

    Article  PubMed  CAS  Google Scholar 

  47. Sodal IE (1989) The medical mass spectrometer. Biomed Instrum Technol 23: 469–476

    PubMed  CAS  Google Scholar 

  48. Sykes MK (1987) Continuous monitoring of alveolar and inspiratory concentrations of anesthetic and respiratory gases is difficult and potentially unsafe. J Clin Monit 3: 116122

    Google Scholar 

  49. Ueberwachungsgeräte für Anästhesiegase - EN-ISO 11196 (1966) Vorläufige Europäische Norm; Normengruppe K, Österreichisches Normungsinstitut

    Google Scholar 

  50. Wagenen RA, Westenskow DR, Benner RE, Gregonis DE, Coleman DL (1986) Dedicated monitoring of anesthetic and respiratory gases by Raman scattering. J Clin Monit 2: 215–219

    Article  Google Scholar 

  51. Walder B, Lauber R, Zbinden AM (1993) Accuracy and cross-sensitivity of 10 different anaesthetic gas monitor. J Clin Monit 9: 364–373

    Article  PubMed  CAS  Google Scholar 

  52. Wallroth CF, Gippert KL, Ryschka M, Falb W, Hattendorff HD, Schramm B, Torge R, Mahrt KH, Kroebel W, Westenskow D (1995) Refractive indices for volatile anesthetic gases: equipment and method for calibrating vaporizers and monitors. J Clin Monit 11 (3): 168–174

    Article  PubMed  CAS  Google Scholar 

  53. Westenskow DR, Coleman DL (1989) Raman scattering for respiratory gas monitoring in the operating room: advantages, specifications, and future advances. Biomed In-strum Technol 23: 485–489

    CAS  Google Scholar 

  54. Wilkes AR, Mapleson WW (1996) Interference of volatile anaesthetics with infrared analysis of carbon dioxide and nitrous oxide tested in the Dräger Cicero EM using sevoflurane. Br J Anaesth 76: 737–739

    Article  PubMed  CAS  Google Scholar 

  55. Woehick HJ, Dunning M, Nithipatikom K, Kulier AH, Henry DW (1996) Mass spectrometry provides warning of carbon monoxide exposure via trifluoromethane. Anesthesiology 84 (6): 1489–1493

    Article  PubMed  CAS  Google Scholar 

  56. Zbinden AM, Maggiorini M, Petersen-Felix S, Lauber R, Thomson DA, Minder CE (1994) Anesthetic depth defined using multiple noxious stimuli during isoflurane/oxygen anesthesia. I Motor reactions. Anesthesiology 80: 253–260

    Google Scholar 

Übersichtsliteratur

  1. Eisenkraft JB, Raemer DB (1993) Monitoring gases in the anesthesia delivery system. In: Ehrenwerth J, Eisenkraft JB (eds) Anesthesia equipment–principles and applications. Mosby, St. Louis Baltimore Boston, pp 201–220

    Google Scholar 

  2. Gravenstein JS (1990) Gas monitoring and pulse oximetry. Butterworth-Heinemann, Stoneham

    Google Scholar 

  3. Knopes KD, Hecker BR (1990) Monitoring anesthetic gases. In: Lake CL (ed) Clinical monitoring. Saunders, Philadelphia London Toronto Montreal Sydney Tokyo, pp 479498

    Google Scholar 

  4. Raemer DB, Philip JH (1990) Monitoring anesthetic and respiratory gases. In: Blitt CD (ed) Monitoring in anesthesia and critical care medicine. Churchill-Livingstone, New York, pp 373–386

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gilly, H. (1998). Anästhesiegase: N2O und volatile Anästhetika. In: List, W.F., Metzler, H., Pasch, T. (eds) Monitoring in Anästhesie und Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12541-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12541-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12542-7

  • Online ISBN: 978-3-662-12541-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics