On Information Matrices for Fixed and Random Parameters in Generally Balanced Experimental Block Designs

  • Barbara Bogacka
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


Information matrices are arguments of most of optimality criteria defined under fixed linear models and also for fixed effects in mixed linear models. However, in the context of mixed models interest often lies on variances of random effects as well as on fixed effects. In the paper the forms and some properties of the information matrix for fixed treatment parameters and for strata variances, in case of generally balanced block designs, are shown. A short discussion on optimality criteria is also presented.


Optimality Criterion Information Matrix Efficiency Factor Multivariate Normal Distribution Stratum Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, R.A. (1981). A unified approach to design of experiments. J. Roy. Statist. Soc. A 144, 214–223.CrossRefMATHGoogle Scholar
  2. Bailey, R.A. (1991). Strata for randomized experiments. J. Roy. Statist. Soc. B 53, 27–78.MATHGoogle Scholar
  3. Bogacka, B. (1993). Efektywnosé warstwowej estymacji kontrastów obiektowych w ogólnie zrównowazonych ukladach blokowych (Stratum estimation efficiency of treatment contrasts in generally balanced block designs), in Polish. Materialy XXIII Colloquium Metodologicznego z Agrobiometrii, Lublin, 20-22.09.1993, 160–174.Google Scholar
  4. Bogacka, B. and Mejza, S. (1994). Optimality of generally balanced experimental block designs. Proc. of International Conference on Linear Statistical Inference - LINSTAT’93, T.Caliríski and R.Kala eds., Kluwer Academic Publishers, Netherlands,185–194.Google Scholar
  5. Calinski, T. (1993). The basic contrasts of a block experimental design with special reference to the notion of general balance. Listy Biometryczne - Biometrical Letters 30, 13–38.Google Scholar
  6. Calinski, T. and Kageyama, S. (1991). On the randomization theory of intra-block and inter-block analysis. Listy Biometryczne - Biometrical Letters 28, 97–122.Google Scholar
  7. Fisher, R.A. (1926). The arrangement of field experiment. J. Min. Agr. 23, 503–513.Google Scholar
  8. Giovagnoli, A. and Sebastiani, P. (1989). Experimental designs for mean and variance estimation in variance components models. Computational Statistics and Data Analysis. 8, 21–28.MathSciNetCrossRefMATHGoogle Scholar
  9. Hocking, R. R. (1985). The Analysis of Linear Models. Monterey. California: Brooks/Cole Publishing Company.Google Scholar
  10. Houtman, A. M. and Speed, T. P. (1983). Balance in designed experiments with orthogonal block structure. Ann. Statist. 11, 1069–1085.MathSciNetMATHGoogle Scholar
  11. Kala, R. (1991). Elementy teorii randomizacji. III. Randomizacja w doswiadczeniach blokowych. Listy Biometryczne - Biometrical Letters 28, 3–23.Google Scholar
  12. Mejza, S. (1992). On some aspects of general balance in designed experiments. Statistica 2, 263–278.MathSciNetGoogle Scholar
  13. Nelder, J.A. (1965a). The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance. Proc. of the Royal Soc. A 283, 147–162.MathSciNetCrossRefMATHGoogle Scholar
  14. Neider, J.A. (1965b). The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. Proc. of the Royal Soc. A 283, 163–178.CrossRefGoogle Scholar
  15. Neyman, J., Iwaszkiewicz, K. and Kolodziejczyk, S. (1935). Statistical problems in agricultural experimentation. J. Roy. Statist. Soc. Suppl. 2, 107-154. Discussions Ibid 2, 154 - 180.Google Scholar
  16. Ogawa, J. and Ikeda, S. (1973). On the randomization of block designs. In: J. N. Srivastava, Ed., A Survey of Combinatorial Theory. North Holland Publishing Company, Amsterdam, 335 - 347.Google Scholar
  17. Payne, R.W. and Tobias, R.D. (1992). General balance, combination of information and the analysis of covariance. Scandinavian J. Statist.Google Scholar
  18. Pearce, S. C., Calinski, T. and Marshall, T. F. (1974). The basic contrasts of an experimental design with special reference to the analysis of data. Biometrika. 63 449 - 460.CrossRefGoogle Scholar
  19. Searle, S. R. (1970). Large sample variances of Maximum Likelihood Estimators of variance components using unbalanced data. Biometrics. 26, 505 - 524.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Barbara Bogacka
    • 1
  1. 1.Department of Mathematical and Statistical MethodsAgricultural University of PoznańPoznańPoland

Personalised recommendations