Skip to main content

Einsatz von Stoßwellen in der Medizin

  • Chapter
  • 643 Accesses

Zusammenfassung

Am 26.2.1980 wurde der erste Nierensteinpatient mit einer „extrakorporalen Stoßwellenlithotripsie (ESWL)“ minimalinvasiv von seinem Steinleiden befreit. Von der Idee zu dieser revolutionären Behandlungsmethode waren ca. 10 Jahre Forschung und Entwicklung notwendig gewesen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Anmerkungen und Literaturhinweise

  1. Lamport H, Newman H, Eichorn R (1950) Federation Proc 9 Mar, pp 73–74

    Google Scholar 

  2. Berlinicke ML, Schenneten F (1951) Vorläufige Mitteilung d I. Med Univ Min d Charité Berlin. Klin Wochenschr 21/22: 390

    Article  Google Scholar 

  3. Mulvaney WP (1953) J of Urology 70(5) Nov pp 704707

    Google Scholar 

  4. Coats CE (1956) J of Urology 75(5) May pp 65–876

    Google Scholar 

  5. Hepp W (1992) Origin and Development of Extracorporeal Shock Wave Lithotripsy (ESWL) 14th EMBS Conf - Pioneers of Medical Technology, Paris

    Google Scholar 

  6. Rieber F (1951) Shock Wave Generator, US Patent 2 559 227

    Google Scholar 

  7. Delius, The Lancet 1995

    Google Scholar 

  8. Tschoep K, Hartmann G, Jox R, Thompson R, Eigler A, Krug A, Erhardt S, Adams G, Endres S, Delius M (2001) Shock Waves: A Novel Method for Cytoplasmic Delivery of Antisense Oligonucleotides. J Mol Med 79: 306–313

    Article  Google Scholar 

  9. Ueberle (2000) Cell transfection by pulsed sound wave effects, Proceedings Microtec 2000; VDI-Verlag, Hannover, September 2000

    Google Scholar 

  10. Sauerbruch, Delius, Baumgartner, Holl, Wess, Weber, Hepp, Brendel (1986) Fragmentation of gallstones by extracorporeal shockwaves. New England J Med 314: 818–822

    Article  Google Scholar 

  11. Sauerbruch, Stern (1989) Fragmentation of bile duct stones by extracorporeal shock waves. Gastroenterology 96: 146–152

    Google Scholar 

  12. Delhaye, Vandermeeren, Baize, Cremer (1992) Extracorporeal shock wave lithotripsy of pancreatic calculi. Gastroenterology 102: 610–620

    Google Scholar 

  13. Sauerbruch, Ho11, Sackmann, Werner, Wotzka, Baumgartner(1987) Disintegration of a pancreatic duct stone with extracorporeal shock waves in a patient with cronic pancreatitis. Endoscopy 19: 207–208

    Google Scholar 

  14. Iro, Nitsche, Schneider, Ell (1989) “Extracorporeal shock wave lithotripsy of salivary gland stones”. Lancet II: 115

    Google Scholar 

  15. Valchanou, Michailow (1991) High energy shockwaves in the treatment of delayed and nonunion fractures. Int Orthopedics (SICOT) 15: 181–184

    Google Scholar 

  16. Loew (1993) Die Wirkung extrakorporal erzeugter hochenergetischer Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter - eine prospektive Studie. In: Chaussy et al. (Hrsg) Die Stoßwelle, Forschung und Klinik. Attempto Tübingen, pp 153–156

    Google Scholar 

  17. Dahmen, Meiss, Nam Skruodies (1992) Extrakorporale Stoßwellentherapie ( ESWT) im knochennahen Weichteilbereich der Schulter. Extr Orthop 11: 25

    Google Scholar 

  18. Rompe, Hopf, Küllmer, Heine, Bürger (1996) Analgesic effect of extracorporeal shock wave therapy on chronic tennis elbow. J Bone Joint Surgery (Br) 78-B: 233–237

    Google Scholar 

  19. Lohse-Busch, Kraemer, Reime (1997) Extracorporeal shock waves in orthopedics, chap 14. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Persönliche Mitteilung

    Google Scholar 

  21. Kuttruff (1988) Physik und Technik des Ultraschalls. Stuttgart

    Google Scholar 

  22. Steven K, Stranne, Franklin, Cocks H, Gettliffe R (1990) Mechanical property studies of human gallstones. Journal of Biomedical Materials Research 24: 1049–1057

    Google Scholar 

  23. Heimbach, Munver, Zhong, Jacobs, Hesse, Müller, Preminger (2000) Acoustic and mechanical properties of artificial stones in comparison to natural stones. J Urol 164: 537–544

    Google Scholar 

  24. Work bond index values communicated by Hepp (1989) (persönliche Mitteilung)

    Google Scholar 

  25. Chaussy (1980) Berührungsfreie Nierensteinzertrümmerung durch extrakorporal erzeugte, fokussierte Stoßwellen. Karger, Basel

    Google Scholar 

  26. Singh, Agarwal (1990) Mechanical and ultrasonic parameters of kidney stones. J Lithotripsy and Stone Disease. 2: 117–123

    Google Scholar 

  27. Chuong, Zhong, Preminger (1992) A comparison of stone damage caused by different modes of shock wave delivery. J Urol 148: 200

    Google Scholar 

  28. IEC Norm 61846: Pressure Pulse Lithotripters, International Electrotechnical Commission, Genf 1998

    Google Scholar 

  29. Loew (1994) Die Wirkung extrakorporal erzeugter hochenergetischer Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter. Habilitationsschrift; Univ Heidelberg

    Google Scholar 

  30. Ueberle (1988) Ein Konzept zur Ortung und Erkennung von Zielen für Schallpulse hoher Energie. Dissertation; Universität Karlsruhe

    Google Scholar 

  31. Folberth W, Hassler D (1990) Die Wertigkeit von Inline und Outline Ultraschall-Lokalisation in der extrakorporalen Stoßwellen-Lithotripsie. Z Urologie Poster I, p 46

    Google Scholar 

  32. Vergunst, Onno, Terpestra, Schröder, Matura (1990) In vivo assessment of shock-wave pressures. Gastroenterology, 1467–1474.

    Google Scholar 

  33. Vergunst, Onno, Terpestra, Schröder, Matura (1989) Assessment of shock wave pressure profiles in vitro: clinical implications. J Lithotripsy and Stone Disease 1 No 4.

    Google Scholar 

  34. Cleveland, Bailey, Crum, Stonehill, Williams, McAteer (1998) Effect of Overpressure on Dissolution and Cavitation of Bubbles Stabilized on a Metal Surface; 135th ASA Conf Proc 2499–2500

    Google Scholar 

  35. Coleman, Codama, Choi, Alanis, Saunders (1995) The cavitation threshold of human tissue exposed to 0, 2 M Hz pulsed ultrasound: preliminary measurements based on a study of clinical lithotripsy. UMB 21: 405–417

    Google Scholar 

  36. Philipp, Delius, Scheffcyk, Vogel, Lauterborn (1993) Interaction of lithotripter-generated shock waves with air bubbles. JASA 5: 2496–2509

    Google Scholar 

  37. Herbertz J (1988) Spontaneous Cavitation in Liquids Free of Nuclei, Fortschritte der Akustik DAGA ‘88, DPG-GmbH, Bad Honnef, Germany, pp 439–442

    Google Scholar 

  38. Church CC (1999) On Nucleation Theory, DKE 821.3 Document 55/99, VDE Frankfurt

    Google Scholar 

  39. Delius, Gambihler (1992) Sonographic imaging of extracorporeal shockwave effects in the liver and gallbladder of dogs. Digestion, 52–60

    Google Scholar 

  40. Coleman, Choi, Saunders (1996) Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med Biol 22 No 8: 1079–1087

    Google Scholar 

  41. Schelling, Delius et al. (1994) Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism. Biophysical Journal 6: 133–140

    Article  Google Scholar 

  42. Suhr, Brümmer, Hülser (1991) “Cavitation-generated free radicals during shock wave exposure: Investigations with cell-free solutions and suspended cells”. Ultrasound Med Biol 17: 761–768

    Article  Google Scholar 

  43. Gambihler S, Delius M (1992) Influence of dissolved and free gases on iodine release and cell killing by shock waves in vitro. Ultrasound in Med and Biol Vol 18. No 6/7:617–621

    Article  Google Scholar 

  44. Herbertz (1993) Physikalische Grenzwerte für die sichere medizinische Anwendung des Ultraschalls am Menschen. DAGA, Fortschritte der Akustik, DPG-Verlag

    Google Scholar 

  45. Delius, Enders, Heine, Stark, Remberger, Brendel (1987) Biological effects of shock waves: lung hemorrhage by shock waves in dogs–pressure dependence. UMB 13: 61–67

    Google Scholar 

  46. Zhong, Cioanta, Cocks, Preminger (1998) Effects of tissue constraint on shock wave-induced bubble oscillation in vivo. 135th ASA Conf Proc Seattle (WA), pp 2495f

    Google Scholar 

  47. Delius M, Denk R, Berding C, Liebich H, Jordan M, Brendel W (1990) Biological-effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med Biol 16: 467–472

    Article  Google Scholar 

  48. Delius (1997) Minimal static excess pressure minimizes the effect of extracorporeal shock waves on cells and reduces it on gallstones. UMB 23: 611–617

    Google Scholar 

  49. Keller, Riedlinger (1990) Vergleich der Kavitation bei verschiedenen Stosswellengeneratoren. Biomed Tech Ergänzungsband 35: 233–234

    Article  Google Scholar 

  50. Wiksell, Kinn (1995) Implications of cavitation phenomena for shot intervals in extracorporeal shock wave lithotrips. British Journal of Urology 75

    Google Scholar 

  51. Lovasz, Palfi, Romics (1999) Temperature elevation of stones during extracorporeal shock wave lithotripsy (ESWL): a hypothesis for possible cause of complications. Abstracts Tagung der Deutschen Urologischen Gesellschaft DGU, V2. 5

    Google Scholar 

  52. Lobentanzer: „The concept of acoustic energy in lithotripsy“. Dornier User Letter (1991), 7, 22–26

    Google Scholar 

  53. Steinbach et al. (1993) Effekte hochenergetischer Ultraschallstoßwellen auf Tumorzellen in vitro and humane Endothelzellen in situ. In: Chaussy et al.: Die Stoßwelle (Hsrg) Tübingen, 104–109

    Google Scholar 

  54. Lewin, Shafer (1991) Shock wave sensors: I. Requirements and Design. J Lithhotripsy and Stone Disease 3 No 1: 3–17

    Google Scholar 

  55. Harris (1998) Lithotripsy pulse measurement errors 79. due to non-ideal hydrophone and amplifier frequency response. FDA, Rockville

    Google Scholar 

  56. Staudenraus Eisenmenger W (1993) Fibre-Optic Probe Hydrophone for Ultrasonic and Shock-Wave Measurements in Water. Ultrasonics 31: 267–273

    Article  Google Scholar 

  57. Müller, Platte (1985) Einsatz einer breitbandigen Piezodrucksonde auf PVDF-Basis zur Untersuchung konvergierender Stoßwellen in Wasser. Acustica 58

    Google Scholar 

  58. Müller (1990) Dornier-Lithotripter im Vergleich: Vermessung der Stoßwellenfelder und Fragmentationswirkungen. Biomed Technik 35, 11: 250–262

    Article  Google Scholar 

  59. Granz, Köhler (1992) What makes a shock wave efficient in lithotripsy?. J Stone Dis 4, No 2, pp 123–125

    Google Scholar 

  60. Coleman, Saunders (1990) A comparison of PVDF Hydrophone Measurements in the Acoustic Field of a Shock Wave Source. In: Extra-und Intrakorporale Lithotripsie bei Harn-, Gallen-, Pankreas und Speichelsteinen. Thieme, pp 15–22

    Google Scholar 

  61. Schafer (1993) Cost effective shock wave hydrophones. J Stone Disease Vol 5: 73–76

    Google Scholar 

  62. Draft of suggested information for reporting extracorporeal shock wave lithotripsy device shock wave measurements. FDA, Rockville, USA; 1991

    Google Scholar 

  63. Schätzle (1992) Spezielle Fokusdruck-Sensoren für die Lithotripsie und deren Kalibration. Fortschritte der Akustik DAGA

    Google Scholar 

  64. Siehe Staudenraus, Eisenmenger

    Google Scholar 

  65. Koch, Molkenstruck, Reibold (1997) Shock-wave mea- 88. surement using a calibrated interferometric fiber-tip sensor. UMB Vol 23, No 8, pp 1259–1266

    Google Scholar 

  66. Coleman, Draguioti, Tiptaf, Shotri, Saunders (1998) Acoustic performance and clinical use of a fiberoptic hydrophone. UMB 24, No 1: 143–151

    Google Scholar 

  67. Pye, Parr, Munro, Anderson, McDicken (1991) Robust electromagnetic probe for the monitoring of lithotripter output. UMB 17, No 9: 931–939

    Google Scholar 

  68. Wess, Ueberle, Dührßen, Hilcken, Renner, Schultheiß, Staudenraus, Rattner, Haaks, Granz (1997) Working Group Technical Developments–Consensus Report. In: Chaussy et al. (eds) High energy shock waves in medicine. Thieme, Stuttgart New York, pp 59–71

    Google Scholar 

  69. Staudenraus J (1991) Erzeugung und Ausbreitung frei-feldfokussierter Hochenergiedruckimpulse in Wasser. PhD Thesis, University of Stuttgart, Stuttgart

    Google Scholar 

  70. Koch, Grünewald (1998) Disintegration mechanisms of weak acoustic shock waves. Ultras Int Conf Proc 1136–1141

    Google Scholar 

  71. Ueberle (1997) Shock wave technology. In Siebert, Buch: Extracorporeal shock waves in orthopedics; Springer, Berlin Heidelberg New York, pp 59–87

    Google Scholar 

  72. Meier, Ueberle, Rupprecht (1998) Physikalische Parameter extrakorporaler Stoßwellen. Biomed Tech 43: 269–274

    Article  Google Scholar 

  73. Ueberle F (2002) Pressure pulses in medicine. In: Srivastava RC, Leufloff D, Takayania K, Groeing H (eds) Shock focussing effects in medical science and sonoluminescence. Springer, Heidelberg (in press)

    Google Scholar 

  74. Ueberle (1997) Acoustic parameters of pressure pulse sources used in lithotripsy and pain therapy. In: Chaussy et al (eds) High energy shock waves in medicine. Thieme, Stuttgart New York, pp 76–85

    Google Scholar 

  75. Dreyer, Riedlinger, Steiger (1998) Experiments on the relation of shock wave parameters to stone disintegration. 135th ASA Conf Proc 2811–2812

    Google Scholar 

  76. Seidl, Steinbach, Wöhrle, Hofstädter (1994) Induction of stress fibres and intercellular gaps in human vascular endothelium by shock-waves. Ultrasonics 32, No 5: 397 ff

    Google Scholar 

  77. Mishriki, Cohen, Baker, Wills, Whitfield, Feneley (1993) Choosing a powerful lithotripter. Brit J Urol 71: 653–660

    Article  Google Scholar 

  78. Vakil, Gracewski, Everbach (1991) Relationship of model stone properties to fragmentation mechanisms during lithotripsy. J Lithotripsy and Stone Disease 3, No 4: 304–310

    Google Scholar 

  79. Kedrinskii (1998) On a mechanism of target disintegration at shock wave focusing in ESWL. 135th ASA Conf Proc 2803–2804

    Google Scholar 

  80. Eisenmenger W (2001) The Mechanisms of Stone Fragmentation in ESWL. Ultrasound in Med & Biol, Vol 27, No 5, pp 683–693

    Article  Google Scholar 

  81. Holtum (1993) Eigenschaften und Desintegration von menschlichen Gallensteinen unter Stoßwelleneinwirkung. Dissertation, Stuttgart

    Google Scholar 

  82. Sass, Steffen, Matura, Folberth, Dreyer, Seifert (1992) Experiences with lithotripters: measurement of standardized fragmentation. J Stone Disease Vol 4, No 2

    Google Scholar 

  83. Delius, Ueberle, Eisenmenger (1998) Extracorporeal shock waves act by shock wave–gas bubble interaction. Ultrasound Med Biol 24, No 7: 1055–1059

    Google Scholar 

  84. Jocham (1998) Report at the meeting of the German Society for Shockwave Lithotripsy

    Google Scholar 

  85. Drach, Dretler, Fair, Finlayson, Gillenwater, Griffith, Lingeman, Newman (1986) Report of the United States cooperative study of extracorporeal shock wave lithotripsy. J Urol 135: 1127–1133

    Google Scholar 

  86. Delius M, Draenert K et al. (1995) Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound in Med and Biol 21, No 9: 1219–1225

    Article  Google Scholar 

  87. Kauleskar Sukul et al. (1993) The effect of high energy shock waves focused on cortical bone. J Surg Res 54: 46–51

    Article  Google Scholar 

  88. Haupt G et al. (1992) Influence of shock waves on fracture healing. Urology 39, 6: 529–532

    Article  Google Scholar 

  89. Deutsche Gesellschaft für Stoßwellenlithotripsie (1995) Konsensus-Workshop 4 der deutschen Gesellschaft für Stoßwellenlithotripsie: Die Stoßwelle. Attempto-Verlag, Tübingen

    Google Scholar 

  90. Miller, Thomas (1995) Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves. UMB 21, No 2: 249–257

    Google Scholar 

  91. Steinbach, Hofstaedter, Roessler, Wieland (1993) Determination of energy-dependent extent of vascular damage caused by high-energy shock waves in an umbilical cord model. Urological Research 21: 279–282

    Google Scholar 

  92. Cathignol D, Mestas JL, Gomez F, Lenz P (1991) Influence of Water Conductivity on the Efficiency and the Reproducibility of Electrohydraulic Shock Wave Generation Ultrasound in Med & Biol, Vol 17, No 8, pp 819–828

    Google Scholar 

  93. Steiger E (1987) Extracorporal Laser Induced Shock Wave Lithotripsy ( ESWL ). Laser MZV-EBM Verlag, pp 201–206

    Google Scholar 

  94. Eisenmenger (1962) Elektromagnetische Erzeugung von ebenen Druckstössen in Flüssigkeiten. Akustische Beihefte, Acustica Heft 1: 185–202

    Google Scholar 

  95. Wess, Marlinghaus, Katona (1989) Lars, eine großaperturige leistungsschallquelle für medizinische Anwendungen. Fortschritte der Akustik DAGA 295 ff. DPG-Verlag

    Google Scholar 

  96. Riedlinger, Ueberle, Wurster, Krauß, Vallon, Konrad, Kopper, Stoll, Goebbels, Gebhardt, Ziegler (1986) Die Zertrümmerung von Nierensteinen durch piezoelektrisch erzeugte Hochenergie-Schallpulse. Urologe A 25: 188–192

    Google Scholar 

  97. Ueberle (1987) Piezoelektrisch erzeugte Hochenergie-pulse und ihre Eignung zur Lithotripsie. In: Ziegler (Hrsg) Die extracorporale und laserinduzierte Stoßwellenlithotripsie bei Harn-und Gallensteinen. Springer, Berlin Heidelberg New York

    Google Scholar 

  98. Feigl, Waldfahrer et al. (1995) Destruction of normal and malignant human cells by high-energy pulsed ultrasound. Proc World Congress on Ultrasonics, pp 1087–1090

    Google Scholar 

  99. Schneider, Feigl, Löhr, Riedlinger, Hahn, Ell (1994) In vitro effects of high energy pulsed ultrasound on human tumor cells. Eur J Gastroenterol & Hepatol 6: 257–262

    Google Scholar 

  100. Joechle (1996) Kavitationsdosimetrie in hochenergetischen Ultraschallfeldern. Dissertation, Heidelberg

    Google Scholar 

  101. Dreyer T, Riedlinger RE, Bauer E, Krauss W (2001) Compact piezoelectric transducers for lithotripsy. JASA, Vol 109(5), Pt 2, May, p2482

    Google Scholar 

  102. Chapelon, Cathignol, Cain, Ebbini, Kluiwstra, Sapozhnikov, Fleury, Berriet, Chupin, Guey (2000) New Piezoelectric Transducers for Therapeutic Ultrasound. Ultrasound in Med & Biol, Vol 26, No 1, pp 153–159

    Google Scholar 

  103. Riedlinger, Weiß, Ueberle (1987) Nichtlinearitäten des transienten Schallfeldes eines piezoelektrischen Hochenergie-Pulssenders. Fortschritte der Akustik DAGA: 489–493

    Google Scholar 

  104. Cathignol, Chapelon, Mestas, Birer, Lewin (1989) Minimization of the negative pressure in piezoelectric shock wave. Ultrasonics Int Conf Proc, pp 1142ff

    Google Scholar 

  105. Cathignol, Tavakkoli, Arefiev (1998) Influence of the pressure time waveform on the transient cavitation effect. 135th ASA Conf Proc, Seattle (WA), pp 2799f

    Google Scholar 

  106. Evan, Willis, Connors et al. (1998) Separation of cavitation and renal injury induced by ahock wave lithotripsy (SWL) from SWL-induced impairment of renal hemodynamics. 135th ASA Conf Proc, Seattle (WA), pp 2487f

    Google Scholar 

  107. Jordan, Bailey, Cleveland, Crum (1998) Detection of Lithotripsy Induced Cavitation in Blood. 135th ASA Conf Proc, Seattle (WA), pp 2809f

    Google Scholar 

  108. Crum, Bailey, Kaczkowski, Makin, Mourad, Beach, Carter, Schmiedl, Chandler, Martin, Vaezy, Keilman, Cleveland, Roy (1998) Therapeutic ultrasound: a promising future in clinical medicine. 135th ASA Conf Proc, Seattle (WA), pp 719f

    Google Scholar 

  109. Köhrmann, Michel, Braun, Weber, Alken (1999) New Interactive Navigation System for Integration of Fluoroscopic and Ultrasound Imaging. J Endourol, Vol 13, Suppl 1, FP3–5 and 3–6, p A32

    Google Scholar 

  110. Delius, Ueberle, Gambihler (1994) The destruction of gall stones and model plaster stones by extracorporeal shock waves. Ultrasound in Med & Biol 20, No 3: 251–258

    Article  Google Scholar 

  111. Parr, Pye, Ritchie, Tolley (1992) Mechanisms responsible for diminished fragmentation of uretreal calculi. J Urol 148: 1079–1083

    Google Scholar 

  112. Nitsche, Amelsberg, Berg, Fölsch (1994) Extracorporeal shock wave lithotripsy of gallstones in different biles and water in vitro. Digestion 55: 175–178

    Article  Google Scholar 

  113. Loew (1994) Die Wirkung extrakorporal erzeugter hochenergetischer Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter. Habilitationsschrift, Univ Heidelberg

    Google Scholar 

  114. Carlson, Boysen, Banner, Gravenstein (1986) Stone Movement During ESWL. In: ESWL for Renal Stone Disease; in Gravenstein, Peter: Extracorporeal shock-wave lithotripsy for renal stone disease. Butterworths, Boston, pp 77–85

    Google Scholar 

  115. Köhrmann, Kahmann, Weber, Rassweiler, Alken (1993) Vergleich verschiedener Lithotripter anhand der Desintegrativen Effektivität (DE) und Desintegrativen Bandbreite ( DB) am In-vitro-Steinmodell. Akt Urol 24: 320–325

    Google Scholar 

  116. Tailly (1999) Consecutive experience with four dornier lithotripters: HM4, MPL 9000, Compact and U/50. J Endourology 13, June 1999, No 5

    Google Scholar 

  117. Rassweiler, Henkel, Köhrmann et al. (1992) Lithotriptor technology: present and future. J Endourology 6: 1

    Article  Google Scholar 

  118. Logarakis, Jewett, Luymes, Honey (2000) Variation in clinical outcome following shockwave lithotripsy. J Urol 163: 721–725

    Article  Google Scholar 

  119. Siehe DGSL Mitgliederversammlung 1999; siehe Anmerkung zum Absetzen von blutverdünnenden Mitteln

    Google Scholar 

  120. Delius M, Jordan M, Eizenhoefer H, Marlinghaus E, Heine G, Liebich H, Brendel W (1988) Biological effects of shock waves: Kidney haernorrhage by shock waves in dogs - administration rate dependence. Ultrasound in Med & Biol 14: 689–694

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ueberle, F. (2002). Einsatz von Stoßwellen in der Medizin. In: Kramme, R. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12453-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12453-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12454-3

  • Online ISBN: 978-3-662-12453-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics