Advertisement

Die unternehmensinterne Optimierung der Bestandspolitik einer Handelsunternehmung

  • Waldemar Toporowski
Chapter
  • 211 Downloads
Part of the Schriften zur Handelsforschung book series (3428, volume 89)

Zusammenfassung

Während im Abschnitt 4.4.4 die Höhe der Warenbestände in Abhängigkeit von der Lagerstruktur analysiert wurde, konzentriert sich die Betrachtung in diesem Kapitel auf die Ausgestaltung der Bestandspolitik bei einer gegebenen Lagerstruktur. Die konstante Lagerstruktur erlaubt eine eingehende Untersuchung verschiedener Bestellstrategien. Im Rahmen von Modellanalysen wird aufgezeigt, welche Kosten-und Leistungseffekte von einzelnen Parametern der Bestellmengenpolitik ausgehen. Will man allerdings diese Wirkungen mit Hilfe quantitativer Modelle untersuchen, so ist vorher zu klären, welche Modelle dafür geeignet sind. Bevor im Abschnitt 5.2 diese Frage untersucht wird, sollen im Abschnitt 5.1 die Entscheidungsparameter der Bestandshaltung, ihre Einflußfaktoren und die zu erwartenden Auswirkungen der Entscheidungen auf die Zielgrößen dargestellt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Vgl. Hadley, G./ Whitin, T.M.: Analysis of Inventory Systems, Englewood Cliffs, N.J. 1963, S. 5.Google Scholar
  2. 2.
    Siehe Abschnitt 3.3.2 dieser Arbeit.Google Scholar
  3. 3.
    Zu theoretischen Ansätzen zur Erfassung von Fehlmengenkosten siehe Schmid, O.: Modelle zur Quantifizierung der Fehlmengenkosten als Grundlage optimaler Lieferservicestrategien bei temporärer Lieferunfähigkeit, Zürich–Frankfurt a.M.–Thun 1977, S.42–93; Midas, W.E.: Measuring Customer Response to Stock-Outs, in: International Journal of Physical Distribution * Materials Management, Vol.9 (1979), No. 5, S. 215–225.Google Scholar
  4. 4.
    Siehe Althoff, T.: Neue Zentrallager-Konzepte im Handel: Fallbeispiel Karstadt, in: GDI (Hrsg.): Moderne Distributionskonzepte im Handel und in der Konsumgüterindustrie, Tendenzen-Erfahrungen-Erfolgspotentiale, Rüschlikon 1988, S.3–9; Lendzion, H.-P., 1991, S. 3738; Jünemann, R., 1989a, S. 709–714.Google Scholar
  5. 5.
    Der Umsatzanteil beträgt bei KARSTADT ca. 48%; siehe Niederhausen, P.S., 1994, S.392.Google Scholar
  6. 6.
    Zum Bestandshaltungsrisiko einer Handelsunternehmung siehe Bowersox, D.J./ Closs, D.J./ Helferich, O.K., 1986, S. 182.Google Scholar
  7. 7.
    Zum Problem der simultanen Optimierung der Systemstruktur und der Prozesse siehe Prümper, W., 1979, S.97–99.Google Scholar
  8. 8.
    Zu Verfahren, mit denen die Nachfrage prognostiziert werden kann, siehe beispielsweise Bichler, K.: Beschaffungs-und Lagerwirtschaft: Praxisorientierte Darstellung mit Aufgaben und Lösungen, 5., erw. Auflage, Wiesbaden 1990, S. 25–49.Google Scholar
  9. 9.
    Siehe Fußnote 30 in diesem Kapitel.Google Scholar
  10. 10.
    Siehe Abschnitt 3.2.2. dieser Arbeit.Google Scholar
  11. 11.
    Siehe Krieger, W., 1981, S.23; Heinrich, K.T.: EAN in der Kaufhof AG, in: Coorganisation (1987), Heft 1, S. 38–43.Google Scholar
  12. 12.
    Siehe Buchholz, E.: Partner des elektronischen Datenaustausches im Handel–EDI (Vortragsmanuskript), Seminar Elektronischer Kommerz: “Geschäftsbeziehungen auf moderne Weise” am 01.09.1993 in Köln; Weinekötter, H.: Beziehungen zwischen Geschäftspartnern auf moderne Weise: Elektronische Kommunikationssysteme führender Kölner Unternehmen (Vortragsmanuskript), Seminar Elektronischer Kommerz: “Geschäftsbeziehungen auf moderne Weise” am 01.09.1993 in Köln; Eierhoff, K.: Datenaustausch Handel/Industrie: EDI optimiert Logistik, in: Hossner, R. (Hrsg.): Jahrbuch der Logistik `93, Düsseldorf 1993, S.63–66; Olbrich, R.: Stand und Entwicklungsperspektiven integrierter Warenwirtschaftssysteme, in: Ahlert, D./ Olbrich, R. (Hrsg.): Integrierte Warenwirtschaftssysteme und Handelscontrolling: Konzeptionelle Grundlagen und Umsetzung in der Handelspraxis, Stuttgart 1994, 5. 134–141.Google Scholar
  13. 13.
    Siehe Zentes, J., 1988, S.4; Zentes, J.: Computer Integrated Merchandising–Neuorientierung der Distributionskonzepte im Handel und in der Konsumgüterindustrie, in: Zentes, J. (Hrsg.): Moderne Distributionskonzepte in der Konsumgüterwirtschaft, Stuttgart 1991, S.4–5; Pfohl, H.-Ch., 1994, S.10; Nagler, R.: Elektronischer Bestell-und Lieferdatenaustausch: Das Beispiel ECODEX, in: Zentes, J. (Hrsg.): Moderne Distributionskonzepte in der Konsumgüterwirtschaft, Stuttgart 1991, S.216–218; Zentes, J.: Tendenzen der Entwicklung von Warenwirtschaftssystemen, in: Zentes, J. (Hrsg.): Moderne Warenwirtschaftssysteme im Handel, Berlin u.a. 1984, S.1–22; Koch, H.J.: Bildschirmtext und Warenwirtschaftssysteme: Fallbeispiel Interfunk, in: Zentes, J. (Hrsg.): Moderne Warenwirtschaftssysteme im Handel, Berlin u.a. 1984, S.45–46; Kolodziej, M.: Der Schritt vom Scanning zur Warenbewirtschaftung: Fallbeispiel dm-drogerie markt, in: Zentes, J. (Hrsg.): Moderne Warenwirtschaftssysteme im Handel, Berlin u.a. 1984, S.62–66; Pfohl, H.-Ch., 1992, S.18–19; Zellekens, H.J.: Daten, die keiner recht nutzt? Handel zieht Vorteile aus der Anwendung von Scanner-Systemen, in: Dynamik im Handel, Jg.34 (1990), Heft 9, S. 20–25.Google Scholar
  14. 14.
    Zum Einfluß auf die Bestandshöhe siehe Lambert, D.M./ Zemke, D.E.: Reducing Channel Inventories by Improving Information Flows, in: NCPDM (Hrsg.): Twenty-First Annual Conference, Vail, Oak Brook, Illinois 1983, S.998–1009; siehe auch Zemke, D.E./ Lambert, D.M.: Utilizing Information Technology to Manage Inventory, in CLM (Hrsg.): Annual Conference, Vol.I, Oak Brook, Illinois 1987, S. 129–132.Google Scholar
  15. 15.
    Siehe Spitzlay, H.: Logistisches Informationssystem, in: Coorganisation (1988), Heft 3, 5.5354; o.V.: Just in Time mit SDS, in: Coorganisation (1987), Heft 4, S.16–22; Schulte, E./ Simmet, H.: Warenwirtschaftssysteme, Just-in-time-Konzepte und Data-Base-Marketing, in: Dynamik im Handel, Jg.34 (1990), Heft 7, S. 23.Google Scholar
  16. 16.
    Siehe Abschnitt 3.3.2.Google Scholar
  17. 17.
    Zu einer ausführlichen Diskussion von Lagerhaltungsmodellen siehe Naddor, E.: Lagerhaltungssysteme, Frankfurt a.M. - Zürich 1971; Klemm, H./ Mikut, M., 1972.Google Scholar
  18. 18.
    Siehe beispielsweise Hadley, G./ Whitin, T.M., 1963, S.8–10; Zwehl von, W.: Losgrößen, wirtschaftliche, in: Kern, W. (Hrsg.): Handwörterbuch der Produktionswirtschaft, Band VII, Stuttgart 1979, Spalten 1165–1166.Google Scholar
  19. 19.
    Siehe Daskin, M S, 1985, S.386.Google Scholar
  20. 20.
    Zu einer kritischen Auseinandersetzung mit der Frage nach der Aussagefähigkeit dieses Modells siehe Günther, H.-O.: Bestellmengenplanung aus logistischer Sicht, in: ZfB, Jg.61 (1991), H.5/6, S.641–666.Google Scholar
  21. 21.
    Siehe Abschnitt 5.3.1.2.Google Scholar
  22. 22.
    Siehe Berekoven, L.: Erfolgreiches Einzelhandelsmarketing: Grundlagen und Entscheidungshilfen, München 1990, S. 302–307.Google Scholar
  23. 23.
    Zum Verhältnis zwischen Logistik und Marketing siehe Abschnitt 3.2.2.Google Scholar
  24. 24.
    Vgl. beispielsweise Schneeweiß, Ch.: Modellierung industrieller Lagerhaltungssysteme: Einführung und Fallstudien, Berlin–Heidelberg–New York 1981, S.49; Hadley, G./ Whitin, T.M., 1963, S.3; Popp, W.: Lagerhaltungsplanung, in: Kern, W. (Hrsg.): Handwörterbuch der 5.3 Bestandsoptimierung in einem einstufigen System 115 Produktionswirtschaft, Band VII, Stuttgart 1979, Spalten 1045–1046.Google Scholar
  25. 25.
    Siehe beispielsweise Grochla, E./ Schönbohm, P.: Beschaffung in der Unternehmung, Stuttgart 1980, S.151. 116 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  26. 26.
    Es gilt ô2KG _ 2bk = 0 für x = O. ôxôx X3 5.3 Bestandsoptimierung in einem einstufigen System 117Google Scholar
  27. 27.
    Vgl. Bichler, K., 1990, 5.111. Siehe hierzu auch Schulte, Ch., 1991, S.173; Glaser, H.: Zum Stand der betriebswirtschaftlichen Beschaffungstheorie, in: ZfB, Jg.51 (1981), Heft 11, S. 1158; Zwehl von, W., 1979, Spalten 1166–1167.Google Scholar
  28. 28.
    Es wird unterstellt, daß von Verbunddispositionen keine Kosteneffekte ausgehen.Google Scholar
  29. 29.
    Zu einer ausführlichen Analyse weiterer Kostenkomponenten siehe Thomas, A.B.: Stock Control in Manufacturing Industries, 2. Auflage, Guildford–London–Worcester 1980, 5.3958. Zu einem Ansatz, in dem der Gewinn maximiert wird, siehe Burwell, T.H./ Dave, D. S./ Fitzpatrick, K.E./ Roy, M.R.: An Inventory Model with Planned Shortages and Price Dependent Demand, in: Decision Sciences, Vol.22 (1991), S.1187–1191; Kim, K.H./ Hwang, H.: Simultaneous Improvement of Supplier’s Profit and Buyer’s Cost by Utilizing Quantity Discount, in: Journal of the Operational Research Society, Vol.40 (1989), No. 3, S. 255–265.Google Scholar
  30. 30.
    Ein Überblick über Verfahren der dynamischen Optimierung, die eine schwankende Nachfrage explizit berücksichtigen, ist beispielsweise zu finden bei Gupta, Y.P./ Keung, Y.: A Review of Multi-stage Lot-sizing Models, in: International Journal of Operations * Production Management, Vol.10 (1990), No.9, S.57–73; Baker, K.R.: Lot-sizing Procedures and a Standard Data Set, A Reconciliation of the Literature, in: Journal of Manufacturing * Operations Management, Vol.2 (1989), No.3, S.199–221; Zoller, K./ Robrade, A.: Dynamische Bestellmengen-und Loßgrößenplanung. Verfahrensübersicht und Vergleich, in: OR Spektrum, Jg.9 (1987), Heft 9, S.219–233; Glaser, H., 1981, S.1160–1165. Es ist anzumerken, daß einige dieser Verfahren auf der klassischen Bestellmengenformel basieren; siehe Wemmerlöv, U.: The Ubiquitous EOQ–Its Relation to Discrete Lot Sizing Heuristics, in: International Journal of Operations * Production Management, Vol.1 (1981), No. 3, S. 161–179.Google Scholar
  31. 31.
    Zum Einfluß von Abweichungen zwischen geschätzten und tatsächlichen Parametern auf die Optimalität der mit der klassischen Bestellmengenformel ermittelten Lösung siehe beispielsweise Mykytka, E.F./ Ramberg, J.S.: On the Sensitivity of the EOQ to Errors in the Forecast of Demand, in: IIE Transactions, Vol.16 (1984), No.2, S.144–151. Zu Verfahren, mit denen die Nachfrage modelliert und geschätzt werden kann, siehe beispielsweise Brown, R.G.: Decision Rules for Inventory Management, New York u.a. 1967, S.105–166; Hadley, G./ Whitin, T.M., 1963, S. 406–419.Google Scholar
  32. 32.
    Zum Ansatz eines vom durchschnittlichen Lagerbestand abhängigen Lagerhaltungskostensatzes siehe Muhlemann, A.P./ Valtis-Spanopoulos, N.P.: A Variable Holding Cost Rate EOQ Model, in: European Journal of Operational Research, Vol.4 (1980), S.132–135; Brown, R.M./ Conine, Jr., T.E./ Tamarkin, M.: A Note on Holding Costs and Lot-Size Errors, in: Decision Sciences, Vol.17 (1986), 5.603–608. Ein Modell mit Lagerhaltungskosten, die nicht linear, sondern progressiv mit der Lagerhaltungsdauer ansteigen, analysiert Weiss, H.J.: Economic Order Quantity Models with Nonlinear Holding Costs, in: European Journal of Operational Research, Vol.9 (1982), S.56–60. Von der Bestellmenge abhängige Bestell-und Lagerhaltungskostensätze modellieren Brown, R.M./ Moser, M.R.: The Effects of Non-Constant Purchase and Replenishment Costs on the EOQ Model, in: International Journal of Operations * Production Management, Vol.5 (1985), No.4, S.71–75. Einen von der Zahl der benötigten Transportmittel abhängigen Bestellkostensatz analysiert Aucamp, D.C.: Nonlinear Freight Costs in the EOQ Problem, in: European Journal of Operational Research, Vol.9 (1982), S.61–63. Russell betrachtet nach Transportgewicht gestaffelte Transportkostensätze, die in den Bestellkostensatz einbezogen werden; siehe Russell, R.M./ Krajewski, L.J.: Optimal Purchase and Transportation Cost Lot Sizing for a Single Item, in: Decision Sciences, Vol.22 (1991), 5. 940–952.Google Scholar
  33. 33.
    Zu Modellvarianten, die diese Prämisse variieren, siehe beispielsweise Silver, E.A./ Peterson, R.: Decision Systems for Inventory Management and Production Planning, 2. Auflage, New York u.a. 1985, S.186–191; Tersine, R.J.: Principles of Inventory and Materials Management, 3. Auflage, New York–Amsterdam–London 1988, S.99–113; Tempelmeier, H.: Quantitative Marketing-Logistik: Entscheidungsprobleme, Lösungsverfahren, EDV-Programme, Berlin u.a. 1983a, 5.126–130; Grochla, E.: Grundlagen der Materialwirtschaft: Das materialwirtschaftliche Optimum im Betrieb, 3., gründlich durchgesehene Auflage, Wiesbaden 1990, S.84–87; Hanssmann, F.: Operations Research in Production and Inventory Control, New York–London 1962, S. 17–18.Google Scholar
  34. 34.
    Zu einem Literaturüberblick über Modelle, die mehrere Artikel berücksichtigen siehe Aksoy, Y./ Erenguc, S.S.: Multi-Item Inventory Models with Co-ordinated Replenishments: A Survey, in: International Journal of Operations * Production Management, Vol.8 (1988), No.1, S.63–73. Zu einzelnen Modellen siehe Silver, E.A.: Modifying the Economic Order Quantity (EOQ) to Handle Coordinated Replenishment of Two or More Items, in: Production * Inventory Management, Vol.16 (1975), No.3, S.26–38; Eijs van, M.J.G.: A Note on the Joint Replenishment Problem under Constant Demand, in: Journal of the Operational Research Society, Vol.44 (1993), No.2, S.185–191; Haseborg, ter, F.: On the Optimality of Joint Ordering Policies in a Multi-Product Dynamic Lot Size Model with Individual and Joint Set-Up Costs, in: European Journal of Operational Research, Vol.9 (1982), S.47–55.Google Scholar
  35. 35.
    Zu einem Überblick über die Modellierung der Wiederbeschaffungszeit in der Literatur siehe Novack, RA., 1989, S.10.Google Scholar
  36. 36.
    Zur Modellierung von Lagerungs-und Finanzierungsrestriktionen siehe beispielsweise Grochla, E., 1990, S.89–92 und die dort angegebene Literatur; siehe hierzu auch Ziegler, H./ Hildebrandt, B.: Bestimmung wirtschaftlicher Bestellmengen bei Ressourcenknappheit, in: ZfB, 4.53 (1983), 5.172–182. Zu weiteren Varianten der klassischen Losgrößenformel siehe Aggarwal, S.C.: Economic Ordering in Periods of Uncertainty, in: Journal of Purchasing * Materials Management, (1979), Fall, S.13–18; Mehra, S./ Agrawal, S.P./ Rajagopalan, M.: Some Comments on the Validity of EOQ Formula under Inflationary Conditions, in: Decision Sciences, Vol.22 (1991), 5.206–212; Wirth, A.: Technical Paper: Inventory Control and Inflation: A Review, in: International Journal of Operations * Production Management, Vol.9 (1989), No.1, S.67–72; Gurnani, Ch.: Economic Analysis of Inventory Systems, in: International Journal of Production Research, Vo1.21 (1983), No.2, S.261–277; Wilson, J.M: Supplier Credit in the Economic Order Quantity Model, in: International Journal of Operations * Production Management, Vol.11 (1991), No.9, S.64–71; Müller-Hagedorn, L./ Biethahn, J.: Bestellpolitik in Handelsbetrieben unter expliziter Berücksichtigung der Kosten für gebundenes Kapital, in: Zeitschrift für Operations Research, Band 19 (1975), S.B155–B175. 120 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  37. 37.
    Siehe Zentes, J., 1988, S.6; Zentes, J., 1991, S.5; Zentes, J.: Logistik vom Hersteller bis zum Kunden: Neuorientierung der Distribution als gesamteuropäische Aufgabe, in: Dynamik im Handel, Jg.34 (1990), Heft 6, S.47–48; Szielaslço, K.: Just-in-Time-Versorgung im Handel?, in: Coorganisation (1986), Heft 4, S. 15–19.Google Scholar
  38. 38.
    Siehe (5.2).Google Scholar
  39. 39.
    Der folgende Ansatz ist angelehnt an Silver, E.A./ Peterson, R., 1985, S.205–208. 5.3 Bestandsoptimierung in einem einstufigen System 121Google Scholar
  40. 40.
    Es gleicht dem Quotienten beider Koordinaten.Google Scholar
  41. 41.
    Die Abbildung zeigt, daß er in diesem Fall 50 GE beträgt.Google Scholar
  42. 42.
    Vgl. Bichler, K., 1990, S.112. Siehe hierzu auch Arnolds, H./ Heege, F./ Tussing, W.: Materialwirtschaft und Einkauf, 7., durchgesehene Auflage, Wiesbaden 1990, S.49–50; Thomas, A.B., 1980, S. 40–44.Google Scholar
  43. 43.
    Vgl. Bichler, K., 1990, S.112–113. Siehe hierzu auch Arnolds, H./ Heege, F./ Tussing, W., 1990, S.50–51; Reichmann, Th.: Lagerhaltungspolitik, in: Kern, W. (Hrsg.): Handwörterbuch der Produktionswirtchaft, Band VII, Stuttgart 1979, Spalte 1063; Lambert, D.M./ Stock, J.R., 1993, S.368–378; Magee, J.F./ Copacino, W.C./ Rosenfield, D.B.: Modern Logistics Management: Integrating Marketing, Manufacturing, and Physical Distribution, New York u.a. 1985, S.228–234; Bowersox, D.J./ Closs, D.J./ Helferich, O.K., 1986, S.189–191; Lambert, D.M./ Mentzer, J.T.: Inventory Carrying Costs: Current Availability and Uses, in: International Journal of Physical Distribution * Materials Management, Vol.9 (1979), No. 6, S. 261–265.Google Scholar
  44. 44.
    Eine von Zinszer durchgeführte Zeitreihenanalyse von Monatsdaten im Zeitraum 1968 bis 1983 kommt zu dem Ergebnis, daß zwischen der Bestandspolitik des Handels und den Kapitalkosten kein signifikanter Zusammenhang besteht. Das Ergebnis deutet darauf hin, daß die ausschließliche Verwendung des Kapitalzinses bei der Modellierung des Lagerhaltungskostensatzes problematisch ist; siehe Zinszer, P.H.: An Examination of the Cost of Capital and Inventory Stocking Policy, in: NCPDM (Hrsg.): Twenty-Second Annual Conference, Vol.II, Oak Brook,Illinois 1984, S. 603–605.Google Scholar
  45. 45.
    Siehe zum Beispiel Klemm, H./ Mikut, M., 1972, S.30–32, S.212–218; Kipshagen, L., 1983, S.38–39; Eisele, P.: Simulationsmodelle zur Distributionskostenminimierung bei zentraler beziehungsweise dezentraler Warenauslieferung, Zürich–Frankfurt a.M.–Thun 1976, S. 75–78.Google Scholar
  46. 46.
    Zum Problem der Erfassung und des Einsatzes von Kostenparametern in Optimierungsmodellen siehe Hanssmann, F., 1962, S.77–86; Günther, H.-O., 1991, S. 648–652.Google Scholar
  47. 47.
    So nennt beispielsweise Bichler einen Wert von 35–170 DM für den Bestellkostensatz; siehe Bichler, K., 1990, S.112–113.Google Scholar
  48. 48.
    Siehe Lambert, D.M./ Stock, J.R., 1993, S. 366.Google Scholar
  49. 49.
    Zu einer Diskussion der Erfassung der Kostenkomponenten siehe Grochla, E., 1990, S.73–79; Schneeweiß, Ch.: Zur Problematik der Kosten in Lagerhaltungsmodellen, in: ZfB, Jg.49 (1979), S. 1–17. Ein Beispiel zur Ermittlung des Lagerhaltungskostensatzes findet sich bei Lambert, D.M./ Stock, J.R., 1993, S. 378–382.Google Scholar
  50. 50.
    Siehe Wäscher, D.: Prozeßkostenrechnung als Instrument zur Reduzierung von Beständen, Logistikkosten und Durchlaufzeiten, in: Kostenrechnungspraxis, Sonderheft 1/92, Logistik-Controlling, S.53. Zum Einsatz des DPR-Modells bei der Unterstützung von Logistikentscheidungen siehe Ihde, G.B./ Femerling, C./ Kemmler, M.: Das Modell der Direkten Produkt-Rentabilität als Instrument zur Unterstützung von Logistikentscheidungen im Konsumgüterhandel, in: Trommsdorff, V. (Hrsg.): Handelsforschung 1990: Internationalisierung im Handel, Jahrbuch der Forschungsstelle für den Handel Berlin ( FfH) e.V., Wiesbaden 1990, S. 182–191.Google Scholar
  51. 51.
    Einen Überblick über die konzeptionellen Ansätze zur Bereitstellung von Kosten-und Leistungsinformationen in der Literatur gibt Weber, J., 1987, S.49–55; siehe auch Schröder, H.: Neuere Entwicklungen der Kosten-und Leistungsrechnung im Handel und ihre Bedeutung für ein integriertes Warenwirtschafts-Controlling, in: Ahlert, D./ Olbrich, R. (Hrsg.): Integrierte Warenwirtschaftssysteme und Handelscontrolling: Konzeptionelle Grundlagen und Umsetzung in der Handelspraxis, Stuttgart 1994, S.301–337; Köpper, H.-U.: Controlling-Konzepte für die Logistik, in: Männel, W. (Hrsg.): Logistik-Controlling: Konzepte, Instrumente, Wirtschaftlichkeit, Wiesbaden 1993, S.48–55; Richter, H.-J.: Theoretische Grundlagen des Controlling: Strukturkriterien für die Entwicklung von Controlling-Konzeptionen, Frankfurt a.M. u.a. 1987, S. 126–132. Ein Kalkulationsbeispiel für Verrechnungssätze findet sich bei Weber, J.Google Scholar
  52. 52.
    Vgl. Kaimann, R.A.: A Comparison of EOQ and Dynamic Programming Inventory Models with Safety Stock and Variable Lead Time Considerations, in: Production * Inventory Management, Vol.15 (1974), No.1, S.4–8; siehe hierzu auch Tersine, R.7.: Inventory Risk: The Determination of Safety Stocks, in: Production * Inventory Management, Vol.15 (1974), No. 3, S. 6–20.Google Scholar
  53. 53.
    Siehe Battersby, A.: A Guide to Stock Control, 2. Auflage, London 1962, S.75–94; Silver, E.A./ Peterson, R., 1985, S.256–259. 126 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  54. 54.
    Siehe Silver, E.A./ Peterson, R., 1985, S.258. 5.3 Bestandsoptimierung in einem einstufigen System 127Google Scholar
  55. 55.
    Siehe hierzu Abschnitt 3.3.2 dieser Arbeit.Google Scholar
  56. 56.
    Siehe Silver, E. A.! Peterson, R., 1985, S. 256–257.Google Scholar
  57. 57.
    Siehe (5.3).Google Scholar
  58. 58.
    Zu weiteren Verfahren, mit denen die Höhe des Sicherheitsbestandes festgelegt werden kann, siehe Hsu, J.I./ El-Najdawi, M.K.: Integrating Safety Stock and Lot-Sizing Policies for Multi-Stage Inventory Systems under Uncertainty, in: Journal of Business Logistics, Vol.12 (1991), No. 2, S. 222–224.Google Scholar
  59. 59.
    Vgl. Abschnitt 3.3.2 dieser Arbeit. 5.3 Bestandsoptimierung in einem einstufigen System 129Google Scholar
  60. 60.
    Siehe Tyworth, J.E.: Modeling Transportation-Inventory Trade-Offs in a Stochastic Setting, in: Journal of Business Logistics, Vol. 13 (1992), No.2, S.101–102; Mentzer, J.T./ Krishnan, R., 1985, S.111–117; Eppen, G.D./ Martin, R.K.: Determining Safety Stock in the Presence of Stochastic Lead Time and Demand, in: Management Science, Vol.34 (1988), No.11, S.13ß01390.Google Scholar
  61. 61.
    Siehe Eppen, G.D./ Martin, R.K., 1988, S. 1382–1383.Google Scholar
  62. 62.
    Siehe Tyworth, J.E., 1992, S.104–116.Google Scholar
  63. 63.
    Mentzer, J.T./ Krishnan, R., 1985, S. 113–114.Google Scholar
  64. 64.
    Es handelt sich um die N(10, 10)- und die Ex(0,1)-Verteilung, d.h. es gilt in beiden Fällen E(X) = 10 und Var(X) = 100.Google Scholar
  65. 65.
    Vgl. Mentzer, J.T./ Krishnan, R., 1985, S.115. 5.3 Bestandsoptimierung in einem einstufigen System 131Google Scholar
  66. 66.
    Siehe Formel (4.9).Google Scholar
  67. 67.
    Zu den Konsequenzen für die optimale Bestellmenge und den Bestellpunkt siehe Das, Ch.: Effect of Lead Time on Inventory: A Static Analysis, in: Operational Research Quarterly, Vol.26 (1975), No. 2, S. 280–281.Google Scholar
  68. 68.
    Vgl. hierzu Magee, J.F./ Copacino, W.C./ Rosenfield, D.B., 1985, S. 63–66, S. 281.Google Scholar
  69. 69.
    Siehe Zinn, W./ Marmorstein, H./ Charnes, J.: The Effect of Autocorrelated Demand on Customer Service, in: Journal of Business Logistics, Vol.13 (1992), No. 1, S. 173–192.Google Scholar
  70. 70.
    Siehe Zinn, W./ Marmorstein, K/ Charnes, J., 1992, S.188–189. 5.3 Bestandsoptimierung in einem einstufigen System 135Google Scholar
  71. 71.
    Hierzu sind der Durbin-Watson-Test und eine Untersuchung der Autokorrelationsfunktion zu zählen; siehe beispielsweise Backhaus, K./ Erichson, B./ Plinke, W./ Weiber, R.: Multivariate Analysemethoden: Eine anwendungsorientierte Einführung, 7., vollständig überarbeitete und erweiterte Auflage, Berlin u.a. 1994, S.34–35, S.42–44; Hartung, J.: Statistik, 7., durchgesehene Auflage, München - Wien 1989, S.740–741. 136 5 Die untemehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  72. 72.
    Der Mittelwert nimmt einen Wert von x + wb an.Google Scholar
  73. 73.
    Vgl. (5.5).Google Scholar
  74. 74.
    Siehe zu diesem Problem Hsu, J.I./ El-Najdawi, M.K., 1991, S.221–235. Sie haben im Rahmen von Simulationsstudien die Auswirkungen unterschiedlicher Verfahren zur Bestimmung von Bestellmengen und Sicherheitsbestanden auf die Höhe der Gesamtkosten untersucht. 5.3 Bestandsoptimierung in einem einstufigen System 137Google Scholar
  75. 75.
    Vgl. hierzu Silver, E. A./ Peterson, R., 1985, S.338–344 und S.361–362.Google Scholar
  76. 76.
    Dabei muB vorausgesetzt werden, daß die Funktion fix) differenzierbar ist.Google Scholar
  77. 77.
    Sie bildet nur eine notwendige Bedingung für das Vorliegen eines Minimums Der Nachweis, daB die zweite Ableitung an der betreffenden Stelle größer als Null ist, ist jedoch aufgrund der allgemeinen Form der Funktion fix) nicht möglich. 138 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  78. 78.
    Siehe (5.8). Der Ausdruck im Zähler entspricht der optimalen Bestellmenge nach der AndlerFormel. Bezeichnet man sie mit xA, so gilt für die optimale Bestellmenge unter Berücksichtigung des SicherheitsbestandesGoogle Scholar
  79. 79.
    Die Größen b, k, p und 1 werden in den folgenden Abbildungen konstant gehalten. Sie entsprechen den Werten in (5.11). Um den Einfluß der Wiederbeschaffungszeit, die als Konstante in der Funktion f(x+wb) berücksichtigt wird, zu isolieren, wird w jeweils gleich Null gesetzt.Google Scholar
  80. 80.
    In diesem Fall muß gelten uaXX = 3 d.h. uac = 3Google Scholar
  81. 81.
    Siehe (5.8).Google Scholar
  82. 82.
    Zu diesem Zweck wäre, c durch z zu substituieren, was zu einer Gleichung 4. Grades für z führt.Google Scholar
  83. 83.
    Hierzu bedient man sich der Rekursion xn+1XA1 + uacxn+wb, die für geeignete Startwerte gegen die Lösung der Gleichung konvergiert. 142 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  84. 84.
    Für x = 100 muß dann gelten UOCC* = 3, d.h. uac = —10.Google Scholar
  85. 85.
    Zu den Arten von Fehlmengenkosten, die als erfolgswirtschaftliche Konsequenzen unzureichender logistischer Aufgabenerfüllung bezeichnet werden, sowie zu den Problemen bei der Ermittlung und Bewertung der von Fehlmengen ausgehenden Wirkungen siehe Weber, J., 1987, S.85–94 und die dort in den Fußnoten 91–109 angegebene Literatur. Zu den Ergebnissen empirischer Untersuchungen siehe Emmelhainz, L.W./ Emmelhainz, M.A./ Stock, J.R.: Logistics Implications of Retail Stockouts, in: Journal of Business Logistics, Vol.12 (1991), No.2, S.129–142; Miiklas, W.E., 1979, S. 226–229.Google Scholar
  86. 86.
    Um die Analyse zu vereinfachen, wird die Wiederbeschaffungszeit gleich Null gesetzt. 144 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  87. 87.
    Silver/ Peterson wählen einen ähnlichen Ansatz für das Bestellpunktmodell; vgl. Silver, E. A./ Peterson, R., 1985, S. 361–362.Google Scholar
  88. 88.
    Es gilt !fu(z)dz=1—Fu(8), wobei F„ die Verteilungsfunktion der N(0,1)-Verteilung bezeichsnet.Google Scholar
  89. 89.
    Dabei ist zu beachten, daß (5.19) nur für by z 2n f(x)plx definiert ist. Ist diese Ungleichung nicht erfiillt und folglich das Gleichungssystem nicht lösbar, so muß für 9 der kleinste zulässige Wert gewählt werden, um das Minimum der Funktion (5.17) zu bestimmen. Vgl. hierzu Silver, E. A./ Peterson, R., 1985, S. 309–311.Google Scholar
  90. 90.
    Siehe beispielsweise Blumenfeld, D.E./ Hall, R.W./ Jordan, W.C.: Trade-Off between Freight Expediting and Safety Stock Inventory Costs, in: Journal of Business Logistics, Vol.6 (1985), No. 1, S. 79–99.Google Scholar
  91. 91.
    Blumenfeld, D.E./ Hall, R.W./ Jordan, W.C., 1985, S. 79.Google Scholar
  92. 92.
    Vergleiche Abschnitt 5.3.2.3.1. 146 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  93. 93.
    Siehe (5.14).Google Scholar
  94. 94.
    Ohne Sicherheitsbestand.Google Scholar
  95. 95.
    Vgl. (5.4). 5.3 Bestandsoptimierung in einem einstufigen System 147Google Scholar
  96. 96.
    Siehe (5.5).Google Scholar
  97. 97.
    Siehe (5.12).Google Scholar
  98. 98.
    Dabei ist allerdings anzumerken, daß beide nicht unabhängig sind, sondern daß die Funktion f(x) die optimale Bestellmenge mitbestimmt; siehe (5.14).Google Scholar
  99. 99.
    Siehe (5.13).Google Scholar
  100. 100.
    Siehe (5.14). 148 5 Die untemehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  101. 101.
    Siehe hierzu Schneeweiß, Ch., 1981, S.63–65. Die Klasse von Modellen, in denen die beiden Parameter simultan optimiert werden, enthält eine Vielzahl von Varianten, die sich vor allem hinsichtlich der Fehlmengenkosten unterscheiden. Ähnlich groß ist die Vielfalt der Lösungsverfahren; siehe beispielsweise Shore, H.: General Approximate Solutions for some Common Inventory Models, in: Journal of the Operational Research Society, Vol.37 ( 1986 ), No. 6, S. 622–629.Google Scholar
  102. 102.
    Zu unterschiedlichen Verteilungsannahmen siehe beispielsweise Strijbosch, L.W.G./ Heuts, R.M.J.: Modelling (s,Q) Inventory Systems: Parametric versus Non-Parametric Approximations for the Lead Time Demand Distribution, in: European Journal of Operational Research, Vol.63 (1992), S.86–101; Bagchi, U./ Hayya, J.C./ Ord, J.K.: Modeling Demand During Lead Time, in: Decision Sciences, Vol.15 (1984), S.157–176.Google Scholar
  103. 103.
    Zur Anwendung statistischer Schätzverfahren bei der Bestimmung der Nachfrageparameter und des Bestellpunktes sowie zu ihrem Einfluß auf die Kosten siehe Silver, E.A./ Rahnama, M.R.: The Cost Effects of Statistical Sampling in Selecting the Reorder Point in a Common Inventory Model, in: Journal of the Operational Research Society, Vol.37 (1986), No.7, S.705–713; siehe auch Kottas, J.F./ Lau, H.-S.: A Realistic Approach for Modeling Stochastic Lead Time Distributions, in: ATTE Transactions, Vol.11 (1979), No. 1, S. 54–60.Google Scholar
  104. 104.
    Im Extremfall ist ein linearer Verlauf möglich, der dem Abhängigkeitsfall entspricht; siehe (5.9).Google Scholar
  105. 105.
    Der abgebildete Funktionsverlauf ergibt sich für die folgenden Parameter: b = 10000, k = 4, 1= 0,35, w = 0,005, a = x+wb, p E [2, 60].Google Scholar
  106. 106.
    Der abgebildete Funktionsverlauf ergibt sich für die folgenden Parameter: b = 10000, I = 0,35, w=0,005, p=3, c=f/10, ao E [0, 30], k=2bzwk=2,4.Google Scholar
  107. 107.
    Zu einem umfangreichen Überblick über mehrstufige Bestandshaltungsmodelle in der Literatur siehe Masters, J.M.: Determination of Near Optimal Stock Levels for Multi-Echelon Distribution Inventories, in: Journal of Business Logistics, Vol.14 (1993), No.2, S.168–169; Deuermeyer, B.L./ Schwarz, L.B.: A Model for the Analysis of System Service Level in Warehouse 5.4 Bestandsoptimierung in einem zweistufigen System Retailer Distribution Systems: The Identical Retailer Case, in: Schwarz, L.B. (Hrsg.): Multi-Level Production/ Inventory Control Systems: Theory and Practice, Amsterdam–New York–Oxford 1981, S. 165–167.Google Scholar
  108. 108.
    Im folgenden wird von Filialen gesprochen.Google Scholar
  109. 109.
    Zu Fehlern, die aus einer unkoordinierten Bestellpolitik beider Stufen resultieren, siehe Meis, H., 1989, S.26–28.Google Scholar
  110. 110.
    Zu einem Modell, das Nachfrageschwankungen berücksichtigt, siehe Eppen, G.D./ Schrage, L.: Centralized Ordering Policies in a Multi-Warehouse System with Lead Times and Random Demand, in: Schwarz, L.B. (Hrsg.): Multi-Level Production/ Inventory Control Systems: Theory and Practice, Amsterdam - New York - Oxford 1981, S.51–67. 154 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  111. 111.
    Ein solches Modell wurde von Park/ Kim analysiert und das Optimum mit anderen Bestellverfahren verglichen; siehe Park, KS./ Kim, D.H.: Congruential Inventory Model for Two-Echelon Distribution Systems, in: Journal of the Operational Research Society, Vol.38 (1987), No. 7, S. 643–650.Google Scholar
  112. 112.
    Siehe (5.2).Google Scholar
  113. 113.
    Siehe Abschnitt 3.1.5 dieser Arbeit.Google Scholar
  114. 114.
    Vgl. Silver, E.A./ Peterson, R., 1985, S.466; Brown, R.G.: Materials Management Systems: A Modular Library, New York u.a. 1977, S.232. fGoogle Scholar
  115. 115.
    Vgl. hierzu Silver, E.A./ Peterson, R., 1985, S. 465–466.Google Scholar
  116. 116.
    Siehe (5.24).Google Scholar
  117. 117.
    Siehe (5.27).Google Scholar
  118. 118.
    Sie gibt den exakten Wert von xz für mopt = 1 an.Google Scholar
  119. 119.
    Es gilt xz = nmxf 160 5 Die unternehmensinterne Optimierung der Bestandspolitik einer HandelsunternehmungGoogle Scholar
  120. 120.
    In einer Auswertung von 500 Parameterkonstellationen betrug die mittlere (maximale) Abweichung zwischen dem Wert nach Formel (5.34) und den tatsächlichen Kosten des Zentrallagers 4,1% (13,6%).Google Scholar
  121. 121.
    Siehe (5.25) und (5.28).Google Scholar
  122. 122.
    Siehe Liebmann, H.-P.: Struktur und Funktionsweise moderner Warenverteilzentren, in: Zen-tes, J. (Hrsg.): Moderne Distributionskonzepte in der Konsumgüterwirtschaft, Stuttgart 1991, S. 25–30; Lendzion, H.-P., 1991, S. 41–43.Google Scholar
  123. 123.
    Durch die Substitution xz = mnxf hängt die Kostenfunktion nur von den Variablen xf und m ab.Google Scholar
  124. 125.
    Vgl. Silver, E.A./ Peterson, R., 1985, S. 496.Google Scholar
  125. 126.
    bzw. kz = 0 können ausgeschlossen werden.Google Scholar
  126. 127.
    Siehe (5.25).Google Scholar
  127. 128.
    Der Näherungswert für xzi von dem die ersten beiden Terme abhängen, ist, wie (5.32) und (5.40) zeigen, bei einer separaten und bei einer simultanen Minimierung der Kosten gleich. xf, von dem der dritte Term abhängig ist, unterscheidet sich vom Fall der separaten Minimierung lediglich durch den Faktorl, Die Rechnung verläuft also analog zu (5.33).Google Scholar
  128. 129.
    Er zeigt, daß sich die Kosten um den Faktor, reduzieren.Google Scholar
  129. 130.
    Die Zahlen beruhen auf einer Auswertung von insgesamt 500 Parameterkonstellationen. Abb. 5.16: Einfluß der Kostenaufteilungsregel auf die GesamtkostenGoogle Scholar
  130. 131.
    Vergleiche (5.45) und (5.47).Google Scholar
  131. 132.
    Diese Überlegung beziehen sich zwar auf zwei Stufen einer Handelsunternehmung, die gleiche Problematik ergibt sich jedoch, wenn man zwei wirtschaftlich unabhängige Unternehmungen betrachtet. Dieses Problem wird deshalb im Kapitel 6 aufgegriffen.Google Scholar
  132. 133.
    Vgl. (5.13).Google Scholar
  133. 134.
    Siehe (5.14).Google Scholar
  134. 135.
    Vgl. Abschnitt 5.4.1.1.3.Google Scholar
  135. 136.
    Vgl. (5.35).Google Scholar
  136. 137.
    Es gilt xz = nmxf und bz = nbf.Google Scholar
  137. 138.
    Vgl. (5.36).Google Scholar
  138. 139.
    Siehe Abschnitt 5.3.2.6.Google Scholar
  139. 140.
    Sei n ganzzahlig.Google Scholar
  140. 141.
    Es gilt ba=nbfund xa = nmxf.Google Scholar
  141. 142.
    Vgl. (5.36).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Waldemar Toporowski
    • 1
  1. 1.KölnDeutschland

Personalised recommendations