Skip to main content

Part of the book series: Algorithms and Combinatorics ((AC,volume 12))

  • 1175 Accesses

Abstract

We are now ready to state an iterative procedure for the resolution of the linear programming problem (LP) in standard form with descriptive “input data” m, n, A, b and c.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dantzig, G.B. [ 1951 ] “Maximization of a linear function of variables subject to linear inequalities”, in Koopmans (ed) Activity Analysis of Production and Allocation, Wiley, New York.

    Google Scholar 

  • Hoffman, A.J [ 1955 ] “How to solve a linear programming problem ”, in Antosiewicz (ed) Linear Programming Volume II, National Bureau of Standards, Washington, 397–424.

    Google Scholar 

  • Gass, S.I. [ 1955 ] “A first feasible solution to the linear programming problem”, in Antosiewicz (ed) Linear Programming Volume II, National Bureau of Standards, Washington, 495–508.

    Google Scholar 

  • Orchard-Hays, W. [ 1954 ] “A composite simplex algorithm - IP”, Technical Report P-525, The Rand Corporation, Santa Monica.

    Google Scholar 

  • Wolfe, Ph. [ 1955 ] “Reduction of systems of linear relations”, in Antosiewicz (ed) Linear Programming Volume II, National Bureau of Standards, Washington, 449451.

    Google Scholar 

  • Chapter 5.3

    Google Scholar 

  • Bland, R. [ 1977 ] “New finite pivot rules for the simplex method”, Mathematics of Operations Research 2 103–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Charnes, A. [ 1952 ] “Optimality and degeneracy in linear programming”, Econometrica 20 160–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Crowder,H. and J.M. Hattingh [ 1975 ] “Partially normalized pivot selection in linear programming”, Mathematical Programming Study Number 4 12–25.

    Article  MathSciNet  Google Scholar 

  • Dantzig, G.B. [ 1951 ] “Maximization of a linear function of variables subject to linear inequalities”, in Koopmans (ed) Activity Analysis of Production and Allocation, Wiley, New York.

    Google Scholar 

  • Dantzig, G.B., Orden, A. and Ph. Wolfe [ 1955 ] “The generalized simplex method for minimizing a linear form under linear inequality restraints”, Pacific Journal of Mathematics 5 183–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldfarb, D. and J.K. Reid [ 1977 ] “A practicable steepest-edge simplex algorithm”, Mathematical Programming 12 361–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Harris, P.M.J [ 1973 ] “Pivot selection methods of the devex LP code”, Mathematical Programming 5 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfe, Ph. [ 1963 ] “A technique for resolving degeneracy in linear programming”, Journal of the Society for Industrial and Applied Mathematics 11 205–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfe, Ph. [1978] Personal communication.

    Google Scholar 

  • Bartels, R.H. [ 1971 ] “A stabilization of the simplex method”, Numerische Mathematik 16 414–434.

    Article  MathSciNet  MATH  Google Scholar 

  • Bartels, R.H. and G.H. Golub [ 1969 ] “The simplex method of linear programming using LU decomposition”, Communications of the Association for Computing Machinery 12 266–268.

    Article  MATH  Google Scholar 

  • Benichou, M., Gauthier, J.M., Hentges, G. and G. Ribière [ 1977 ] “The efficient solution of large-scale linear programming problems — Some algorithmic techniques and computational results” Mathematical Programming 13 280–322.

    Article  MathSciNet  MATH  Google Scholar 

  • Benoit [ 1924 ] “Sur une méthode de résolution des équations normales etc. (procédé du commandant Cholesky)”, Bull. géodésique 2.

    Google Scholar 

  • Bixby, R.E. [ 1990 ] “Implementing the simplex methods, Part I: Introduction, Part II: The initial basis”, Working paper TR90–32 Mathematical Sciences, Rice U., Houston.

    Google Scholar 

  • Dantzig, G.B. and W. Orchard-Hays [ 1954 ] “The product form for the inverse in the simplex method”, Mathematical Tables and Other Aids to Computation 8 64–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Forrest, J.J.H. and J.A. Tomlin [ 1972 ] “Updating triangular factors of the basis to maintain sparsity in the product form simplex method”, Mathematical Programming 2 263–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Gay, D.M. [ 1978 ] “On combining the schemes of Reid and Saunders for sparse LP bases”, in Duff and Stewart (eds) Sparse Matrix Proceedings, SIAM, Philadelphia, 313–334.

    Google Scholar 

  • Goldfarb, D. “On the Bartels-Golub decomposition for linear programming bases”, Mathematical Programming 13 272–279.

    Google Scholar 

  • Hoffman, A.J. [ 1952 ] “On approximate solutions of systems of linear inequalities”, Journal of Research of National Bureau of Standards 49 263–265.

    Article  Google Scholar 

  • Hoffman, A., Mannos, N., Sokolowsky, D. and N. Wiegman [ 1953 ] “Computational experience in solving linear programs”, Journal of the Society for Industrial and Applied Mathematics 1 17–33.

    Article  MATH  Google Scholar 

  • Hellerman E. and D. Rarick [ 1971 ] “Reinversion with the preassigned pivot procedure”, Mathematical Programming 1 195–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhn, H.W. and R.E. Quandt [ 1963 ] “An experimental study of the simplex method”, Proceedings of Symposia in Applied Mathematics, American Mathematical Society, Providence Vol 15 107–124.

    Google Scholar 

  • Kulisch, U.W. and W.L. Miranker [ 1986 ] “The arithmetic of the digital computer: A new approach”, SIAM Review 28 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Markowitz, H.M. [ 1957 ] “The elimination form of the inverse and its application to linear programming” Management Science 3 255–269.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, R.E. [ 1966 ] Interval Analysis, Prentice Hall, Englewood Cliffs.

    MATH  Google Scholar 

  • Reid, J.K. [ 1982 ] “A sparsity exploiting variant of the Bartels-Golub decomposition for linear programming basis”, Mathematical Programming 24 55–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, S.M. [ 1963 ] “Bounds for error in the solution set of a perturbed linear program”, Linear Algebra and its Applications 6 69–81.

    Article  Google Scholar 

  • Saunders, M.A. [ 1976 ] “A fast, stable implementation of the simplex method using Bartels-Golub updating”, in Bunch and Rose (eds) Sparse Matrix Computations, Academic Press, New York 213–226.

    Google Scholar 

  • Tewarson, R.R. [ 1973 ] Sparse Matrices, Academic Press, New York.

    MATH  Google Scholar 

  • Tomlin, J.A. [ 1972 ] “Modifying triangular factors of the basis in the simplex method”, in Rose and Willoughby (eds) Sparse Matrices and Their Applications, Plenum, New York 77–85.

    Chapter  Google Scholar 

  • Wilkinson, J.H. [ 1971 ] “Modern error analysis”, SIAM Review 13 548–568.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfe, Ph. [ 1965 ] “Errors in the solution of linear programming problems” in Rau (ed) Error in Digital Computation Volume II, Wiley, New York 271–284.

    Google Scholar 

  • Wolfe, Ph. and L. Cutler [ 1963 ] “Experiments in linear programming”, in Graves and Wolfe (eds) Recent advances in mathematical programming, McGraw-Hill Book Co., New York 177–200.

    Google Scholar 

  • Zurmühl, R. [1958] Matrizen,Springer Verlag, Berlin, 2nd edition.

    Google Scholar 

  • Beale, E.M.L. [ 1955 ] “Cycling in the dual simplex algorithm”, Naval Research Logistics Quarterly 2 269–275.

    Article  MathSciNet  Google Scholar 

  • Hoffman, A.J. [1953] “Cycling in the simplex method”, National Bureau of Standards, Report No. 2974, Washington.

    Google Scholar 

  • Kotiah, T.C.T. and D.I. Steinberg [ 1978 ] “On the possibility of cycling with the simplex method”, Operations Research 26 374–376.

    Article  Google Scholar 

  • Marshall, K.T. and J.W. Suurballe [ 1969 ] “A note on cycling in the simplex method”, Naval Research Logistics Quarterly 16 121–137.

    MATH  Google Scholar 

  • Wolfe, Ph. [ 1963 ] “A technique for resolving degeneracy in linear programming”, Journal of the Society for Industrial and Applied Mathematics 11 205–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Bland, R. [ 1977 ] “New finite pivot rules for the simplex method”, Mathematics of Operations Research 2 103–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Charnes, A. [ 1952 ] “Optimality and degeneracy in linear programming”, Econometrica 20 160–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Dantzig, G.B. [ 1960 ] “Inductive proof of the simplex method”, IBM Journal of Research and Development 4 505–506.

    Article  MathSciNet  MATH  Google Scholar 

  • Dantzig, G.B., Orden, A. and Ph. Wolfe [ 1955 ] “The generalized simplex method for minimizing a linear form under linear inequality restraints”, Pacific Journal of Mathematics 5 183–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfe, Ph. [ 1963 ] “A technique for resolving degeneracy in linear programming”, Journal of the Society for Industrial and Applied Mathematics 11 205–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, S. [ 1991 ] “On anti-cycling pivoting rules for the simplex method”, Operations Research Letters 10 189–192.

    Article  MathSciNet  MATH  Google Scholar 

  • Chvâtal, V. [ 1983 ] Linear Programming, Freeman Press, New York.

    MATH  Google Scholar 

  • Dantzig, G.B. [ 1955 ] “Upper bounds, secondary constraints, and block triangularity in linear programming”, Econometrica 23 174–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Dantzig, G.B. [ 1969 ] “Mathematical Programming: Decomposition”, in Aronofsky (ed) Progress in Operations Research, Wiley, New York 176–193.

    Google Scholar 

  • Dantzig, G.B. and R.M. Van Slyke [ 1967 ] “Generalized upper bounding techniques”, Journal of Computer and System Sciences 1 213–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Dantzig, G.B. and Ph. Wolfe [ 1960 ] “Decomposition principle for linear programs”, Operations Research 8 101–111.

    Article  MATH  Google Scholar 

  • Ho, J.K. and E. Loute [ 1981 ] “An advanced implementation of the Dantzig-Wolfe decomposition algorithm for linear programming”, Mathematical Programming 20 303–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Klee, V. and G.J. Minty [ 1972 ] “How good is the simplex algorithm?” in Sisha (ed) Inequalities–III, Academic Press, New York 159–175.

    Google Scholar 

  • Perold, A.F. and G.B. Dantzig [ 1978 ] “A basis factorization method for block triangular linear programs”, in Duff and Stewart (eds) Proceedings of the Symposium on Sparse Matrix Computations, Knoxville 283–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Padberg, M. (1999). Simplex Algorithms. In: Linear Optimization and Extensions. Algorithms and Combinatorics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12273-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12273-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08511-6

  • Online ISBN: 978-3-662-12273-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics