Dynamics of Incoherent Transfer

  • D. L. Huber
Part of the Topics in Applied Physics book series (TAP, volume 49)

Abstract

In the material presented in Chap. 2 emphasis was placed on the microscopic aspects of inter-atomic energy transfer. Expressions were given for the rates characterizing the transfer of excitation between individual atoms or molecules. In this chapter we discuss the connection between experimental studies of the time evolution of the fluorescence and the underlying microscopic transfer processes. We consider two classes of experiments: time resolved fluorescence line narrowing and the time evolution of the integrated fluorescence in the presence of traps. In each case we first discuss the general theory. Various approximations are then outlined, followed by a brief discussion of the use of the theory in the interpretation and analysis of experiments. Special features of the analysis which pertain to transport in one-dimensional systems are discussed in Appendix 3.A. Backtransfer from the traps is analyzed in Appendix 3.B.

Keywords

Migration Corn Chromium Europium Fluores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1
    W.M. Yen: J. Lumin. 18/19, 639 (1979) (and references therein)Google Scholar
  2. 3.2
    D.L. Huber, D.S. Hamilton, B. Barnett: Phys. Rev. B16, 4642 (1977)ADSCrossRefGoogle Scholar
  3. 3.3
    C. Kittel: Introduction to Solid State Physics, 4th ed., ( John Wiley, New York 1971 Chap. 2Google Scholar
  4. 3.4
    R. Alben, M.F. Thorpe: J. Phys. C8, L275 (1975) M.F. Thorpe, R. Alben: J. Phys. C9, 2555 (1976). The connection between the spin wave problem considered here and in [3.5] and the rate equations is discussed in the appendix to [3.2]Google Scholar
  5. 3.5
    R. Alben, S. Kirkpatrick, D. Beeman: Phys. Rev. B15, 346 (1977)ADSCrossRefGoogle Scholar
  6. 3.6
    W.Y. Ching, D.L. Huber, B. Barnett: Phys. Rev. B17, 5025 (1978; also M. Fibich, D.L. Huber: Phys. Rev. B20, 5369 (1979)CrossRefGoogle Scholar
  7. 3.7
    S.K. Lyo, T. Holstein, R. Orbach: Phys. Rev. B18, 1637 (1978)ADSGoogle Scholar
  8. 3.8
    M. Inokuti, H. Hirayama: J. Chem. Phys. 43, 1978 (1965)Google Scholar
  9. 3.
    S. Alexander: Unpublished (cited in [3.71)Google Scholar
  10. 3.10
    K. Godzik, J. Jortner: Chem. Phys. 38, 227 (1979); Chem. Phys. Lett. 63, 3 (1979). See also S.K. Lyo: Phys. Rev. B20, 1297 (1979); A. Blumen, J. Klafter, R. Silbey: J. Chem. Phys. 72, 5320 (1980)Google Scholar
  11. 3.11
    C.R. Gochanour, H.C. Anderson, M.D. Fayer: J. Chem. Phys. 70, 4254 (1979). The connection between the diagrammatic approach followed in this reference and other methods of calculating R(t) involving continuous random walk arguments has been discussed by J. Klafter and R. Silbey: Phys. Rev. Lett. 44, 55 (1980)Google Scholar
  12. 3.12
    W.Y. Ching, D.L. Huber: Phys. Rev. B18, 5320 (1978)CrossRefGoogle Scholar
  13. 3.13
    T. Holstein, S.K. Lyo, R. Orbach: Phys. Rev. Lett. 36, 891 (1976)ADSCrossRefGoogle Scholar
  14. 3.14
    N. Montegi, S. Shionoya: J. Lumin. 8, 1 (1973)CrossRefGoogle Scholar
  15. 3.15
    D.S. Hamilton, P.M. Selzer, W.M. Yen: Phys. Rev. B16, 1858 (1977)ADSCrossRefGoogle Scholar
  16. 3.16
    P.M. Selzer, D.L. Huber, B.B. Barnett, W.M. Yen: Phys. Rev. B17, 4979 (1978)ADSCrossRefGoogle Scholar
  17. 3.17
    D.L. Huber: Phys. Rev. B20, 2307 (1979)ADSCrossRefGoogle Scholar
  18. 3.18
    M. Inokuti, F. Hirayama: J. Chem. Phys. 43, 1978 (1965)Google Scholar
  19. 3.19
    D. Fay, G. Huber, W. Lenth: Opt. Commun. 28, 117 (1979)ADSCrossRefGoogle Scholar
  20. 3.20
    P.G. de Gennes: J. Phys. Chem. Sol. 7, 345 (1958)ADSCrossRefGoogle Scholar
  21. 3.21
    A.I. Burshtein: Zh. Eksp. Teor. Fiz. 62, 1695 (1972). [Sov. Phys. - JETP 35, 882 (1972)]. See also L.D. Zusman: Zh. Eksp. Teor. Fiz. 73, 662 (1977). [Sov. Phys. - JETP 46, 347 (1977)]Google Scholar
  22. 3.22
    M. Yokota, I. Tanimoto: J. Phys. Soc. (Jpn.) 22, 779 (1967)ADSCrossRefGoogle Scholar
  23. 3.23
    L.D. Landau, E.M. Lifshitz: Quantum Mechanics: Non-Relativistic Theory ( Addison-Wesley, Reading 1958 ) pp. 403–407Google Scholar
  24. 3.24
    M. Trlifaj: Czech. J. Phys. 8, 510 (1958)ADSCrossRefMathSciNetGoogle Scholar
  25. 3.25
    D.L. Huber: Phys. Rev. B20, 5333 (1979)ADSCrossRefGoogle Scholar
  26. 3.26
    R.J. Elliott, J.A. Krumhansl, P.L. Leath: Rev. Mod. Phys. 46, 465 (1974)ADSCrossRefMathSciNetGoogle Scholar
  27. 3.27
    Y.K. Voronko, T.G. Mamedov, V.V. Osiko, A.M. Prokhorov, V.P. Sakun, I.A. Shcherbakov: Zh. Eksp. Teor. Fiz. 71, 478 (1976). [Sov. Phys.-JETP 44, 251 (1976)]Google Scholar
  28. 3.28
    M.J. Weber: Phys. Rev. B4, 2932 (1971)ADSCrossRefGoogle Scholar
  29. 3.29
    J. Hegarty, D.L. Huber, W.M. Yen (to be published)Google Scholar
  30. 3.30
    D.L. Huber: Phys. Rev. B8, 2124 (1973) and references therein. The connection between the spin wave calculation in the reference and the rate equations is established in the appendix to [3.2]Google Scholar
  31. 3.31
    J. Bernasconi, S. Alexander, R. Orbach: Phys. Rev. Lett. 41, 185 (1978)ADSCrossRefGoogle Scholar
  32. 3.32
    S. Alexander, J. Bernasconi, R. Orbach: Phys. Rev. B17, 4311 (1978)ADSCrossRefMathSciNetGoogle Scholar
  33. 3.33
    J. Heinrichs, N. Kumar: Phys. Rev. B20, 1377 (1979)ADSCrossRefGoogle Scholar
  34. 3.34
    P.M. Richards: Phys. Rev. B20, 2965 (1979)Google Scholar

Additional References with Titles

  1. B. Movaghar, G. W. Sauer: Diffusion and Trapping of Excitations in Disordered Systems. J. Phys. C 13, 4933 (1980)ADSCrossRefGoogle Scholar
  2. D. L. Huber: Fluorescence in the Presence of Trap II: Coherent Transfer. Phys. Rev. B 22, 1714 (1980)ADSCrossRefGoogle Scholar
  3. K. K. Ghosh, D. L. Huber: T-Matrix Analysis of Donor Fluorescence. J. Lumin. 21, 225 (1980)CrossRefGoogle Scholar
  4. K. K. Ghosh, J. Hegarty, D. L. Huber: Theory of Donor Fluorescence in the Diffusion Limit. Phys. Rev. B 22, 2837 (1980)ADSCrossRefGoogle Scholar
  5. S. K. Lyo: Time Development of the Spectral Redistribution in Disordered Systems with a Lorentzian Transfer Rate: Theoretical Models and a Monte Carlo Study. Phys. Rev. B 22, 3616 (1980)ADSCrossRefGoogle Scholar
  6. F. S. Dzheparov, V. S. Smelov, V. F. Shestopal: Concentration Expansion in the Theory of Exciton Migration along a Disordered Lattice. Pis’ma Zh. Eksp. Teor. Fiz. 32, Si (1980) [English transl. JETP Lett 32, 47 (1980)]ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • D. L. Huber

There are no affiliations available

Personalised recommendations