Advertisement

Kardiovaskuläre Magnetresonanztomographie

  • P. Theissen
  • F. M. Baer

Zusammenfassung

Nach der Entdeckung des Phänomens der Kernspinresonanz durch Purcell und Bloch 1946 entwickelte sich aus dieser Eigenschaft der Atomkerne mit ungerader Protonenzahl, wie von Wasserstoff, Kohlenstoff und Phosphor, die außer einem magnetischen Moment auch einen Eigendrehimplus, Spin, besitzen und im Magnetfeld auf definierte Weise auf die Einstrahlung von Radiofrequenzwellen reagieren, eine der wichtigsten chemischen Analysemethoden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Akins EW, Hill JA, Sievers KW (1987) Conti CR. Assessment of left ventricular wall thickness in healed myocardial infarction by magnetic resonance imaging. Am J Cardiol 59: 24–28PubMedCrossRefGoogle Scholar
  2. Baer FM, Smolarz K, Jungehülsing M et al. (1992) Chronic myocardial infarction: assessment of morphology, function, and perfusion by gradient echo magnetic resonance imaging and 99mTcmethoxyisobutyl-isonitrile SPECT. Am Heart J 123: 636–645PubMedCrossRefGoogle Scholar
  3. Baer FM, Theissen P, Schneider CA et al. (1998) Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 31: 1040–1048PubMedCrossRefGoogle Scholar
  4. Baer FM, Voth E, Schneider CA et al. (1995) Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F-fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91: 1006–1015PubMedCrossRefGoogle Scholar
  5. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL (1991) Myocardial viability in patients wich chronic coronary artery disease and left ventricular dysfunction: Thallium-201 reinjection vs. 18Ffluorodeoxyglucose. Circulation 83: 26–37PubMedCrossRefGoogle Scholar
  6. Bucker A, Adam G, Neuerburg JM et al. (1998) Echtzeit-MR mit radialer k-Raumabtastung zur Überwachung angiographischer Interventionen. Fortschr Röntgenstr 169 /5: 542–546CrossRefGoogle Scholar
  7. Camacho SA, Lanzer P, Toy BJ et al. (1988) In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study. Am Heart J n 6: 701–708CrossRefGoogle Scholar
  8. Chien D, Edelman R (1992) Fast magnetic resonance imaging. In: Higgins CB, Hricak H, Helms CA (eds) MRI of the body. Raven, New York, pp 175–198Google Scholar
  9. Gomes AS, Lois JF, Williams RG (1990) Pulmonary arteries: MR imaging in patients with congenital obstruction of the right ventricular outflow tract. Radiology 74: 51–57Google Scholar
  10. Higgins CB, Sakuma H (1996) Heart disease: Functional evaluation with MR imaging. Radiology 199: 307–315PubMedGoogle Scholar
  11. Manning WJ, Li W, Boyle NG, Edelman RR (1993) Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation 87: 94–104PubMedCrossRefGoogle Scholar
  12. Nienaber CA, Kodolitsch Y von, Nicolas V et al. (1993) The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med 328: 1–9PubMedCrossRefGoogle Scholar
  13. Rebergen SA, van der Wall EE, Doornbos J, de Roos A (1993) Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J 126: 1439–1456PubMedCrossRefGoogle Scholar
  14. Schmidt M, Theissen P, Crnac J et al. (1999) Klinischer Nutzen der Magnetresonanztomographie zur Darstellung von Koronarstenosen — ein Vergleich mit der Koronarangiographie and der Myokardszintigraphie. DMW (im Druck)Google Scholar
  15. Sechtem U, Tscholakoff D, Higgins CB (1986) MRI of the abnormal pericardium. AJR 147: 245–256PubMedCrossRefGoogle Scholar
  16. Semelka RC, Shoenut JP, Wilson ME, Pellech AE, Patton JN (1992) Cardiac masses: Signal intensity features on spin-echo, gradient-echo, gadolinium-enhanced spin-echo, and turboflash images. JMRI 2: 415–420PubMedCrossRefGoogle Scholar
  17. Semelka RC, Tornei E, Wagner S et al. (1990) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119: 1367–1373PubMedCrossRefGoogle Scholar
  18. Shellock FG (1992) MRI biologic effects and safety considerations. In: Higgins CB, Hricak H, Helms CA (eds) MRI of the body. Raven, New York, pp 233–265Google Scholar
  19. Theissen P (1997) MRI in cardiovascular diseases with indications for contrast media. Imaging Decisions MRI 1: 2–14Google Scholar
  20. Theissen P, Sechtem U, Langkamp S et al. (1989) Nichtinvasive Beurteilung aortokoronarer Venenbrücken mit Kernspintomographie. Nuldearmedizin 28: 234–242Google Scholar
  21. Van Rossum AC, Visser FC, Van Eenige MJ et al. (1990) Value of gadolinium-diethylene-triamine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am J Cardiol 65: 845–851PubMedCrossRefGoogle Scholar
  22. White RD, Holt WW, Cheitlin MD et al. (1988) Estimation of the functional and anatomic extent of myocardial infarction using magnetic resonance imaging. Am Heart J 115: 740–748PubMedCrossRefGoogle Scholar
  23. Yabe T, Mitsunami K, Inubushi T, Kinoshita M (1995) Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation 92: 15–23PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • P. Theissen
  • F. M. Baer

There are no affiliations available

Personalised recommendations