Examples

  • Khosrow Chadan
  • Pierre C. Sabatier
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

We consider here some simple examples of Bargmann potentials. These are, in general, potentials for which the Jost function is a rational function of k. In fact, in the third section of chapter IV we studied an even more general case consisting of an initial arbitrary potential for which everything is known, and an increment which has the effect of multiplying the initial Jost function by a rational function of k.

Keywords

Geophysics Lost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Comments and References

  1. Bargmann V. (1949a): Remarks on the determination of a central field of force from the elastic scattering phase shifts, Phys. Rev. 75, 2, 301–303 (sections I V. H, VI.H, Foreword )Google Scholar
  2. Bargmann V. (1949b): On the connection between phase shifts and scattering potential, Rey. Mod. Phys. 21, 3, 488–493 (sections I V. H, VI.H, Foreword )Google Scholar
  3. Jost R., and Kohn W. (1952b): Equivalent potentials, Phys. Rev. 88, 2, 382–385 (sections III.H, I V. H, VI.H, Foreword )Google Scholar
  4. Jost R., and Kohn W. (1953): On the relation between phase shift energy levels and the potential, Danske Vid. Selsk. Math. Fys. Medd. 27, 9, 3–19 (sections III.H, I V. H, VI.H, Foreword )Google Scholar
  5. Newton R. G. (1957a): Electron scattering by the deuteron, Phys. Rev. 105, 763–764 (section VI.H, Foreword)Google Scholar
  6. Moses H. E., and Tuan S. F. (1959): Potential with zero scattering phases, Nuovo Cimento 13, 198–206 (section VI.H, Foreword)Google Scholar
  7. Bargmann V. (1949b): On the connection between phase shifts and scattering potential, Rey. Mod. Phys. 21, 3, 488–493 (sections I V. H, VI.H, Foreword )Google Scholar
  8. Chadan K. (1955): Potentiel neutron-proton et photodésintégration du deutéron, Journal de Physique et le radium 16, 843–848 (section VI.H)Google Scholar
  9. Chadan K. (1956): Potentiel neutron-proton et capture des neutrons thermiques par les protons, C. R. Acad. Sc. Paris 242, 1964–1966 (section VI.H)Google Scholar
  10. Newton R. G. (1957a): Electron scattering by the deuteron, Phys. Rev. 105, 763–764 (section VI.H, Foreword)Google Scholar
  11. Newton R. G. (1957b): Deuteron photodisintegration cross section, Phys. Rev. 107, 1025–1027 (section VI.H, Foreword)Google Scholar
  12. Blazek M. (1962a): The Gel’fand-Levitan equation and its application to the scattering of neutron on protons, Czech. J. Phys. B12, 249–257 (sections IV.H, VI.H, IX. 1 )Google Scholar
  13. Fulton T., and Newton R. G. (1956): Explicit noncentral potentials and wave functions for given s-matrices, Nuovo Cimento 10, 677–717 (section IV.H, Foreword)Google Scholar
  14. Newton R. G., and Fulton T. (1957): Phenomenological neutron—proton potentials, Phys. Rev. 107, 1103–1111 (section VI.H)Google Scholar
  15. Swan P., and Pearce W. A. (1966): Deduction of potentials from scattering phase shifts I. Neutral particles, Nucl. Phys. 79, 77–107 (section VI.H, Foreword)Google Scholar
  16. Swan P. (1967): Deduction of nonsingular potentials from scattering phase shifts II. Charged particles, Nuel. Phys. A90, 436–448 (section VI.H)Google Scholar
  17. Benn J., and Scharf G. (1972): Determination of nucleon—nucleon potentials from coupled partial waves using the Marchenko theory, Nucl. Phys. A 183, 319–336 (section VI.H)Google Scholar
  18. Baeteman M. L., and Chadan K. (1975): The inverse scattering problem for singular oscillating potentials, Nucl. Phys. A 255, 34–49 (sections LH, I I. H, IILH, V.H, VI.H )Google Scholar
  19. Baeteman M. L., and Chadan K. (1976): Scattering theory with highly singular oscillating potentials, Ann. Inst. Henri Poincaré XXIV A, 1–16 (sections LH, fI.H, IILH, V.H, VI.H)Google Scholar
  20. Lambert F., Corbella O., and Thome Z. D. (1975): Scattering at low energies and the inverse problem at fixed angular momentum, Nucl. Phys. B90, 267–284 (section VI.H)Google Scholar
  21. Weidelt P. (1972): The inverse problem of geomagnetic induction, Z. Geophys. 38, 257289 (section VI.H)Google Scholar
  22. Sabatier P. C. (1966b): Asymptotic properties of the potentials in the inverse-scattering problem at fixed energy, J. Math. Phys. 7, 8, 1515–1531 (sections XII.2, XII.3, XII.4, XII.5, XII. 7, XILH, Foreword )Google Scholar
  23. Sabatier P. C. (1966c): Analytic properties of a class of potentials and the corresponding Jost functions,* J. Math. Phys. 7, 11, 2079–2091 (sections XII. 7, XII.H, Foreword )Google Scholar
  24. Sabatier P. C. (1972b): Comparative evolution of the inverse problems, in Mathematics of profile inversion, L. Colin Ed., 9.2–9.34 (sections VI.H, X I. H, XVI.H, Foreword )Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Khosrow Chadan
    • 1
  • Pierre C. Sabatier
    • 2
  1. 1.Laboratoire de Physique ThéoriqueUniversité de Paris-SudOrsayFrance
  2. 2.Université des Sciences et Techniques du LanguedocMontpellier CedexFrance

Personalised recommendations