Skip to main content

Myocardial release of lactate, hypoxanthine, and urate during and following percutaneous transluminal coronary angioplasty. Potential mechanism for the generation of free radicals

  • Conference paper
Book cover Interventional Cardiology and Angiology

Abstract

Until recently the assessment of alteration in myocardial metabolism in man early after an abrupt occlusion of a major coronary artery has not been feasible. PTCA however, now provides a unique opportunity to study the time course of these metabolic changes during the transient interruption of coronary flow by the balloon occlusion sequence in patients with single-vessel disease and without angiographically demonstrable collateral circulation (1, 2). The need to detect any persisting metabolic or mechanical dysfunction becomes of even greater concern as the number of dilated vessels and the duration of balloon inflation tend to increase, thereby enhancing both the extent and the severity of ischemia. The risk exists that the damage induced by the intervention may exceed its benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serruys PW, Wijns W, van den Brand M et al. (1984) Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation 70: 25

    Article  PubMed  CAS  Google Scholar 

  2. Serruys PW, van den Brand M, Brower RW, Hugenholtz PG (1984) Left ventricular hemodynamics, regional blood flow and lactate metabolism during balloon occlusion: can we alter the sequence of ischemic events? In: Rutishauser W and Roskam MW (eds), Silent myocardial ischmia. Springer-Verlag. Berlin, Heidelberg, New York, Tokyo, p. 37

    Google Scholar 

  3. Jong JW (1979) Biochemistry of acutely ischemic myocardium. In Schaper W (ed), The pathophysiology of myocardial perfusion. Amsterdam, Elsevier/North-Holland, Biochemical Press, p. 719

    Google Scholar 

  4. Remme WJ, Jong JW, Verdouw PD (1979) Effect of pacing-induced myocardial ischemia on hypoxanthine efflux from the human heart. Am J Cardiol 40: 55

    Article  Google Scholar 

  5. Hartwick RA, Kristulovic AM, Brown PR (1979) Identification and quantification of nucleosides, bases and other UV-absorbing compounds in serum, using reversed-phase high-performance liquid chromatography. II Evaluation of human sera. J Chromatogr 186: 659

    Google Scholar 

  6. Harmsen E, Jong JW, Serruys PW (1981) Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta 115: 73

    Article  PubMed  CAS  Google Scholar 

  7. Apstein CS, Puchner E and Brachfield N (1979) Improved automated lactate determination. Anal Biochem 38: 20

    Article  Google Scholar 

  8. Chatterjee SK, Bhattacharya M and Barlow JJ (1979) A simple. specific radiometric assay for 5’-nucleotidase. Anal Biochem 95: 497

    Article  PubMed  CAS  Google Scholar 

  9. Scheibe B, Bernt E, Bergmeyer HU (1974) Uric acid. In: Bergmeyer HU (ed) Methods of enzymatic analysis. New York: Academic Press, pp. 1951–8

    Chapter  Google Scholar 

  10. Jong JW, Keijzer E, Uitendaal MP and Harmsen E (1980) Further purification of adenosine kinase from rat heart using affinity and ion-exchange chromatography. Anal Biochem 101: 407

    Article  PubMed  Google Scholar 

  11. Edlund A, Berglund B, Van Dorne D, et al. (1985) Coronary flow regulation in patients with ischemic heart disease: release of purines and prostacyclin and the effect of inhibitors of prostaglandin formation. Circulation 71: 1113

    Article  PubMed  CAS  Google Scholar 

  12. Ontyd J, Schrader J (1984) Measurement of adenosine, inosine and hypoxanthine in human plasma. J Chromatogr 307: 404

    Article  PubMed  CAS  Google Scholar 

  13. Metha J, Pepine CJ (1978) Effect of sublingual nitroglycerin on regional flow in patients with and without coronary disease. Circulation 58: 803

    Article  Google Scholar 

  14. Manning AS, Hearse DJ, Dennis SC et al. (1980) Myocardial ischemia: an isolated, globally perfused rat heart model for metabolic and pharmacological studies. Eur J Cardiol 11: 1

    PubMed  CAS  Google Scholar 

  15. Wilson DF, Owen CS, Erecinska M (1979) Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration. A new mathematical model. Arch Biochem Biophys 195: 494

    Google Scholar 

  16. Danforth WH, Naegle S, Bing RJ (1960) Effects of ischemia and reoxygenation on glycolytic reactions and adenosine triphosphate in heart muscle. Cire Res 8: 965

    Article  CAS  Google Scholar 

  17. Garlick BP, Radda GK, Seeley RI (1979) Studies of acidosis in the ischemic heart by phosphorous nuclear magnetic resonance. Biochem J 184: 547

    PubMed  CAS  Google Scholar 

  18. Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure. Reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44: 1115

    Article  PubMed  CAS  Google Scholar 

  19. Hearse DJ, Crome R, Yellon DM, Wyse R (1983) Metabolic and flow correlates of myocardial ischemia. Cardiovasc Res 17: 452

    Article  PubMed  CAS  Google Scholar 

  20. Schouten B, de Jong JW (1987) Age-dependent increase in xanthine oxidoreductase differs in various heart cell types. Cire Res 61: 604–7

    Article  Google Scholar 

  21. Downey JM, Chambers DE, Miura T et al. (1986) Allopurinol fails to limit infarct size in a xanthine oxidase deficient species. Circulation 74 Suppl 2: 372

    Google Scholar 

  22. Podzuweit T, Braun W, Müller A, Schaper W (1986). Arrhythmias and innfarction in the ischemic pig leart are not mediated by xanthine oxidase-derived free oxygen radicals. Circulation 74 Suppl 2: 346

    Google Scholar 

  23. Krenitsky TA, Tuttle JV, Cattau EL, Wang P (1974) A comparison of the distribution and electron acceptor specificities of xanthine and aldehyde oxidase. Comp Biochem Physiol 49B: 687

    CAS  Google Scholar 

  24. Jarasch ED, Bruder G, Held HW (1986) Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand 548 Suppl 1: 39

    Google Scholar 

  25. Wajner M, Harkness RA (1988) Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues. Biochem Soc Trans, in press

    Google Scholar 

  26. Eddy LJ, Stewart JR, Jones HP et al. (1987) Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am J Physiol 253: H709

    PubMed  CAS  Google Scholar 

  27. Ramboer CRH (1969) A sensitive and nonradioactive assay for serum and tissue xanthine oxidase. J Lab Clin Med 74: 828

    PubMed  CAS  Google Scholar 

  28. Muxfeldt M, Schaper W (1987) The activity of xanthine oxidase in hearts of pigs, guinea pigs, rats, and humans. Basic Res Cardiol 82: 486

    Article  PubMed  CAS  Google Scholar 

  29. Watts RWE, Watts JEM, Seegmiller JE (1965) Xanthine oxidase activity in human tissues and its inhibition by allopurinol. J Lab Clin Med 66: 688

    PubMed  CAS  Google Scholar 

  30. Hearse DJ, Manning AS, Downey JM, Yellon DM (1986) Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol Scand 548:Suppl: 65

    Google Scholar 

  31. McCord JM (1984) Are free radicals a major culprit? In Hearse DJ, Yellon DM (eds). Therapeutic approaches to myocardial infarct size limitation. New York, Raven Press, p. 209

    Google Scholar 

  32. Chambers DE, Parks DA, Patterson G, et al. (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Moll Cell Cardiol 17: 145

    Article  CAS  Google Scholar 

  33. Vusse GJ (1985) Pharmacological intervention in acute myocardial ischemia and reperfusion. Trends Pharmacol Sci 6: 76

    Article  Google Scholar 

  34. England MD, Cavarocchi NC, O’Brien JF, et al. (1986) Influence of antioxidants (mannitol and allopurinol) on free radical generation during and after cardiopulmonary bypass. Circulation 74 Suppl 3: 134

    Google Scholar 

  35. Peterson DA, Asinger RW, Elsperger KJ et al. (1985) Reactive oxygen species may cause myocardial reperfusion injury. Biochem Biophys Res Commum 127: 87

    Article  CAS  Google Scholar 

  36. Zweier JL, Flaherty JT, Wcisfeldt ML (1987) Direct measurements of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci (USA) 84: 140–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Serruys, P.W. et al. (1989). Myocardial release of lactate, hypoxanthine, and urate during and following percutaneous transluminal coronary angioplasty. Potential mechanism for the generation of free radicals. In: Höfling, B., v. Pölnitz, A., Erdmann, E., Steinbeck, G., Strauer, B.E. (eds) Interventional Cardiology and Angiology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-662-12114-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12114-6_4

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-662-12116-0

  • Online ISBN: 978-3-662-12114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics