Myocardial release of lactate, hypoxanthine, and urate during and following percutaneous transluminal coronary angioplasty. Potential mechanism for the generation of free radicals

  • P. W. Serruys
  • T. Huizer
  • J. Bonnier
  • R. Troquay
  • H. Suryapranata
  • O. Leborgne
  • J. de Jong
Conference paper


Until recently the assessment of alteration in myocardial metabolism in man early after an abrupt occlusion of a major coronary artery has not been feasible. PTCA however, now provides a unique opportunity to study the time course of these metabolic changes during the transient interruption of coronary flow by the balloon occlusion sequence in patients with single-vessel disease and without angiographically demonstrable collateral circulation (1, 2). The need to detect any persisting metabolic or mechanical dysfunction becomes of even greater concern as the number of dilated vessels and the duration of balloon inflation tend to increase, thereby enhancing both the extent and the severity of ischemia. The risk exists that the damage induced by the intervention may exceed its benefit.


Xanthine Oxidase High Pressure Liquid Chromatography Balloon Inflation Isosorbide Dinitrate Xanthine Oxidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Serruys PW, Wijns W, van den Brand M et al. (1984) Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation 70: 25PubMedCrossRefGoogle Scholar
  2. 2.
    Serruys PW, van den Brand M, Brower RW, Hugenholtz PG (1984) Left ventricular hemodynamics, regional blood flow and lactate metabolism during balloon occlusion: can we alter the sequence of ischemic events? In: Rutishauser W and Roskam MW (eds), Silent myocardial ischmia. Springer-Verlag. Berlin, Heidelberg, New York, Tokyo, p. 37Google Scholar
  3. 3.
    Jong JW (1979) Biochemistry of acutely ischemic myocardium. In Schaper W (ed), The pathophysiology of myocardial perfusion. Amsterdam, Elsevier/North-Holland, Biochemical Press, p. 719Google Scholar
  4. 4.
    Remme WJ, Jong JW, Verdouw PD (1979) Effect of pacing-induced myocardial ischemia on hypoxanthine efflux from the human heart. Am J Cardiol 40: 55CrossRefGoogle Scholar
  5. 5.
    Hartwick RA, Kristulovic AM, Brown PR (1979) Identification and quantification of nucleosides, bases and other UV-absorbing compounds in serum, using reversed-phase high-performance liquid chromatography. II Evaluation of human sera. J Chromatogr 186: 659Google Scholar
  6. 6.
    Harmsen E, Jong JW, Serruys PW (1981) Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta 115: 73PubMedCrossRefGoogle Scholar
  7. 7.
    Apstein CS, Puchner E and Brachfield N (1979) Improved automated lactate determination. Anal Biochem 38: 20CrossRefGoogle Scholar
  8. 8.
    Chatterjee SK, Bhattacharya M and Barlow JJ (1979) A simple. specific radiometric assay for 5’-nucleotidase. Anal Biochem 95: 497PubMedCrossRefGoogle Scholar
  9. 9.
    Scheibe B, Bernt E, Bergmeyer HU (1974) Uric acid. In: Bergmeyer HU (ed) Methods of enzymatic analysis. New York: Academic Press, pp. 1951–8CrossRefGoogle Scholar
  10. 10.
    Jong JW, Keijzer E, Uitendaal MP and Harmsen E (1980) Further purification of adenosine kinase from rat heart using affinity and ion-exchange chromatography. Anal Biochem 101: 407PubMedCrossRefGoogle Scholar
  11. 11.
    Edlund A, Berglund B, Van Dorne D, et al. (1985) Coronary flow regulation in patients with ischemic heart disease: release of purines and prostacyclin and the effect of inhibitors of prostaglandin formation. Circulation 71: 1113PubMedCrossRefGoogle Scholar
  12. 12.
    Ontyd J, Schrader J (1984) Measurement of adenosine, inosine and hypoxanthine in human plasma. J Chromatogr 307: 404PubMedCrossRefGoogle Scholar
  13. 13.
    Metha J, Pepine CJ (1978) Effect of sublingual nitroglycerin on regional flow in patients with and without coronary disease. Circulation 58: 803CrossRefGoogle Scholar
  14. 14.
    Manning AS, Hearse DJ, Dennis SC et al. (1980) Myocardial ischemia: an isolated, globally perfused rat heart model for metabolic and pharmacological studies. Eur J Cardiol 11: 1PubMedGoogle Scholar
  15. 15.
    Wilson DF, Owen CS, Erecinska M (1979) Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration. A new mathematical model. Arch Biochem Biophys 195: 494Google Scholar
  16. 16.
    Danforth WH, Naegle S, Bing RJ (1960) Effects of ischemia and reoxygenation on glycolytic reactions and adenosine triphosphate in heart muscle. Cire Res 8: 965CrossRefGoogle Scholar
  17. 17.
    Garlick BP, Radda GK, Seeley RI (1979) Studies of acidosis in the ischemic heart by phosphorous nuclear magnetic resonance. Biochem J 184: 547PubMedGoogle Scholar
  18. 18.
    Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure. Reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44: 1115PubMedCrossRefGoogle Scholar
  19. 19.
    Hearse DJ, Crome R, Yellon DM, Wyse R (1983) Metabolic and flow correlates of myocardial ischemia. Cardiovasc Res 17: 452PubMedCrossRefGoogle Scholar
  20. 20.
    Schouten B, de Jong JW (1987) Age-dependent increase in xanthine oxidoreductase differs in various heart cell types. Cire Res 61: 604–7CrossRefGoogle Scholar
  21. 21.
    Downey JM, Chambers DE, Miura T et al. (1986) Allopurinol fails to limit infarct size in a xanthine oxidase deficient species. Circulation 74 Suppl 2: 372Google Scholar
  22. 22.
    Podzuweit T, Braun W, Müller A, Schaper W (1986). Arrhythmias and innfarction in the ischemic pig leart are not mediated by xanthine oxidase-derived free oxygen radicals. Circulation 74 Suppl 2: 346Google Scholar
  23. 23.
    Krenitsky TA, Tuttle JV, Cattau EL, Wang P (1974) A comparison of the distribution and electron acceptor specificities of xanthine and aldehyde oxidase. Comp Biochem Physiol 49B: 687Google Scholar
  24. 24.
    Jarasch ED, Bruder G, Held HW (1986) Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand 548 Suppl 1: 39Google Scholar
  25. 25.
    Wajner M, Harkness RA (1988) Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues. Biochem Soc Trans, in pressGoogle Scholar
  26. 26.
    Eddy LJ, Stewart JR, Jones HP et al. (1987) Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am J Physiol 253: H709PubMedGoogle Scholar
  27. 27.
    Ramboer CRH (1969) A sensitive and nonradioactive assay for serum and tissue xanthine oxidase. J Lab Clin Med 74: 828PubMedGoogle Scholar
  28. 28.
    Muxfeldt M, Schaper W (1987) The activity of xanthine oxidase in hearts of pigs, guinea pigs, rats, and humans. Basic Res Cardiol 82: 486PubMedCrossRefGoogle Scholar
  29. 29.
    Watts RWE, Watts JEM, Seegmiller JE (1965) Xanthine oxidase activity in human tissues and its inhibition by allopurinol. J Lab Clin Med 66: 688PubMedGoogle Scholar
  30. 30.
    Hearse DJ, Manning AS, Downey JM, Yellon DM (1986) Xanthine oxidase: a critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol Scand 548:Suppl: 65Google Scholar
  31. 31.
    McCord JM (1984) Are free radicals a major culprit? In Hearse DJ, Yellon DM (eds). Therapeutic approaches to myocardial infarct size limitation. New York, Raven Press, p. 209Google Scholar
  32. 32.
    Chambers DE, Parks DA, Patterson G, et al. (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Moll Cell Cardiol 17: 145CrossRefGoogle Scholar
  33. 33.
    Vusse GJ (1985) Pharmacological intervention in acute myocardial ischemia and reperfusion. Trends Pharmacol Sci 6: 76CrossRefGoogle Scholar
  34. 34.
    England MD, Cavarocchi NC, O’Brien JF, et al. (1986) Influence of antioxidants (mannitol and allopurinol) on free radical generation during and after cardiopulmonary bypass. Circulation 74 Suppl 3: 134Google Scholar
  35. 35.
    Peterson DA, Asinger RW, Elsperger KJ et al. (1985) Reactive oxygen species may cause myocardial reperfusion injury. Biochem Biophys Res Commum 127: 87CrossRefGoogle Scholar
  36. 36.
    Zweier JL, Flaherty JT, Wcisfeldt ML (1987) Direct measurements of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci (USA) 84: 140–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. W. Serruys
    • 1
  • T. Huizer
    • 1
  • J. Bonnier
    • 2
  • R. Troquay
    • 2
  • H. Suryapranata
    • 1
  • O. Leborgne
    • 1
  • J. de Jong
    • 1
  1. 1.Catheterization and Cardiochemical Laboratories, Thorax CenterErasmus UniversityRotterdamThe Netherlands
  2. 2.Department of CardiologyCatharina HospitalEindhovenThe Netherlands

Personalised recommendations