Abstract

Electron probe microanalysis essentially involves a miniaturisation of the classical procedure of X-ray spectrometry, based upon the discovery by Moseley [1] that each element in the periodic table is characterised by a relatively simple X-ray spectrum. The basic experimental arrangement is outlined in Fig. 1. An electron beam (E) of moderate energy (5–40 kV) is directed on to the sample (S) to be investigated, in vacuo, and the X-rays (X) emitted from it (in all directions) are dispersively analysis by means of a Bragg spectrometer (C). The latter employs a crystal of known atomic lattice spacing to diffract X-rays of differing wavelengths into different angles, in direct analogy to the formation of a spectrum from visible light by a glass prism. The wavelength λ diffracted at a given angle θ (the glancing angle, measured from the crystal surface) is related to the lattice spacing d by the simple equation:

Keywords

Boron Tungsten Electron Lens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moseley, H. G.J.: Phil. Mag. 26, 1024 (1913); 27, 703 (1914).Google Scholar
  2. 2.
    Castaing, R., and A. Guinier: Proc. Conf. Electron Microscopy, Delft, p. 60. Delft: Nijhoff 1949.Google Scholar
  3. 3.
    Boxovsxii, I. B.: Collection of problems in metallurgy, p. 135. Moscow: A.N. 1953.Google Scholar
  4. 4.
    Castaing, R.: Thesis, University of Paris (1951).Google Scholar
  5. 5.
    Duncumb, P., and V. E. Cosslett: X-ray microscopy and microradiography, p. 374. New York: Academic Press 1957.Google Scholar
  6. 6.
    Duncumb, P., and V. E. Cosslett: Thesis, University of Cambridge (1957).Google Scholar
  7. 7.
    Castaing, R.: Advan. Electron. Electron Phys. 13, 317 (1960); - X-ray optics and X-ray microanalysis, p. 263. New York: Academic Press 1963.Google Scholar
  8. 8.
    Cosslett, V. E.: Rept. Progr. Phys. 28, 381 (1965); - J. Electronmicroscopy (Tokyo) 16, 51 (1967).Google Scholar
  9. 9.
    Duncumb, P.: Sci. Progr. (Oxford) 55, 511 (1967).Google Scholar
  10. 10.
    Heinrich, K. F. J.: National Bureau of Standards, Technical Note No. 278 (1967).Google Scholar
  11. 11.
    Philirert, J.: This volume, p. 114.Google Scholar
  12. 12.
    Cooke, C. J., and P. Duxcumb: This volume, p.245.Google Scholar
  13. 13.
    Fontijn, L. A.: This volume, p. 261.Google Scholar
  14. 14.
    Chapman, P. F.: This volume, p. 241.Google Scholar
  15. 15.
    Wardell, I. R. M., and V. E. Cosslett: The electron microprobe, p. 23. New York: Wiley 1966.Google Scholar
  16. 16.
    Pichoir, F.: This volume, p. 373.Google Scholar
  17. 17.
    Bishop, H. E.: Brit. J. Appl. Phys., Ser. II, 1, 673 (1968).ADSGoogle Scholar
  18. 18.
    Hall, T. A.: Proceedings of Microprobe Symposium, National Bureau of Standards, Washington 1967, p. 269.Google Scholar
  19. 19.
    Wittry, D. B., R. P. Ferrier, and V. E. Cosslett: This volume, p. 293.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • V. E. Cosslett
    • 1
  1. 1.Cavendish LaboratoryUniversity of CambridgeEngland

Personalised recommendations