Advertisement

Abstract

Lack of appropriate standards frequently forces the analyst to use elemental standards. The usefulness of correction models is limited by the accuracy to which the input parameters are known. Uncertainties in presumably known quantities (mass absorption coefficients, fluorescence yield, mean ionization potentials, etc.) are in many cases the limiting factors. The resulting analytical errors can be minimized by judicious choice of experimental conditions. This paper will give examples involving the corrections for absorption, fluorescence by characteristic lines, and atomic number effects.

Key words

Microprobe analysis error propagation absorption of X-rays fluorescence quantitative analysis atomic number effects. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poole, D. M., and P. M. Thomes: The electron microprobe (MCKINLEY, HEINRICH, WITTRY, eds.), p. 269. New York: John Wiley & Sons 1966.Google Scholar
  2. 2.
    Quantitative electron probe microanalysis. NBS Special Publ. 298, 93, 133 (1968).Google Scholar
  3. 3.
    Thomas, P. M.: AERE Report 4593 U. K. At. Energy Authority, 1964.Google Scholar
  4. 4.
    Heinrich, K. F. J.: Advanc. X-ray Microanalysis, 11, 40 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    Ku, H. H.: J. Res. Natl. Bur. Std. C 70, 263 (1966).Google Scholar
  6. 6.
    Spielberg, N.: Rev. Sci. Instr. 37, 1268 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    Heinrich, K. F. J., D. Vieth, and H. Yakowitz: Advanc. X-Ray Analysis 9, 208 (1966).Google Scholar
  8. 8.
    Yakowitz, H. and K. F. J. HEINRICH: Mikrochim. Acta (1) 182 (1968).Google Scholar
  9. 9.
    Philibert, J.: X-ray optics and X-ray analysis (PATTEE, COSSLETT, ENGSTRÖM, eds.), p. 379.New York: Academic Press 1963.Google Scholar
  10. 10.
    Duxcumb, P., and P. K. SHIELDS • The electron microprobe (MCKINLEY, HEINRICH, WITTRY,eds.), p. 284. New York:. John Wiley & Sons 1966.Google Scholar
  11. 11.
    Duxcumb, P., and P. K. Shields, et D. A. MELFORD: Optique des rayons X etmicroanalyse (CASTAING, DESCHAMPS, PHILI-BERT, eds.), p. 240. Paris: Hermann 1966.Google Scholar
  12. 12.
    Heinrich, K. F. J., and H. YAKOWITZ: Mikrochim. Acta 905 (1968).Google Scholar
  13. 13.
    Castaing, R.: Advanc. Electron. Electron Phys. 13, 317 (1960).CrossRefGoogle Scholar
  14. 14.
    Green, M.: Thesis. Cambridge University 1964.Google Scholar
  15. 15.
    Duncumb, P. and S. J. B. REED: Quantitative electron probe microanalysis. NBS, Special Publ. 298 133 (1968).Google Scholar
  16. 16.
    Springer, G.: Neues Jahrb. Mineral., Monatsh. 9 /10, 304 (1967).MathSciNetGoogle Scholar
  17. 17.
    DÙrian, J. C., et R. CASTAING: Optique des rayons X et microanalyse (CASTAING, DES-CHAMPS, PHILIBERT, eds.), p. 193. Paris: Hermann 1966.Google Scholar
  18. 18.
    Green, M., and V. E. COSSLETT: Proe. Phys. Soc. (London) 78, 1206 (1961).ADSCrossRefGoogle Scholar
  19. 19.
    Pockmann, L. T., D. L. WEBSTER, P. KIRKPATRICK, and K. HARWORTH: Phys. Rev. 71, 330 (1947).CrossRefGoogle Scholar
  20. 20.
    Springer, G.: Neues Jahrb., Mineral., Monatsh. (4), 113 (1966).Google Scholar
  21. 21.
    Heinrich, K. F. J.: Quantitative electron probe microanalysis. NBS Special Publ. 298, 8 (1968).ADSGoogle Scholar
  22. 22.
    Caldwell, D. O.: Phys. Rev. 100, 291 (1955).ADSCrossRefGoogle Scholar
  23. 23.
    Berger, M. J., and S. M. SELTZER: N. Sc. Sci., Nat. Res. Council Publ. 1133 ( Washington, D. C., 1964 ), p. 205.Google Scholar
  24. 24.
    Mulvey, T.: Quantitative electron probe microanalysis, NBS, Special Publ. 298, 81 (1968).Google Scholar
  25. 25.
    Salter, W. J. M.: Brit. J. Appl. Phys. Ser. 2, 1, 541 (1968).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • K. F. J. Heinrich
    • 1
  • H. Yakowitz
    • 1
  1. 1.Institute for Materials ResearchNational Bureau of StandardsUSA

Personalised recommendations