Rate-Distortion Theory

  • Te Sun Han
Part of the Stochastic Modelling and Applied Probability book series (SMAP, volume 50)


In the source coding treated in Chapter 1 we consider the problems in which we minimize the coding rate subject to the constraints such as
$$\eqalign{ & \mathop {\lim }\limits_{n \to \infty } {\varepsilon _n} = 0, \cr & \mathop {\lim \sup }\limits_{n \to \infty } {\varepsilon _n} \leqslant \varepsilon \left( {0 \leqslant \varepsilon {\text{ < }}1} \right) \cr & or \cr & \mathop {\lim \inf }\limits_{n \to \infty } \frac{1}{n}\log \frac{1}{{{\varepsilon _{_n}}}} \geqslant r\left( {r{\text{ > }}0} \right), \cr} $$


Distortion Function Random Code Distortion Measure Direct Part Mixed Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Te Sun Han
    • 1
  1. 1.Graduate School of Information SystemsUniversity of Electro-CommunicationsTokyoJapan

Personalised recommendations