Rate-Distortion Theory

  • Te Sun Han
Part of the Stochastic Modelling and Applied Probability book series (SMAP, volume 50)

Abstract

In the source coding treated in Chapter 1 we consider the problems in which we minimize the coding rate subject to the constraints such as
$$\eqalign{ & \mathop {\lim }\limits_{n \to \infty } {\varepsilon _n} = 0, \cr & \mathop {\lim \sup }\limits_{n \to \infty } {\varepsilon _n} \leqslant \varepsilon \left( {0 \leqslant \varepsilon {\text{ < }}1} \right) \cr & or \cr & \mathop {\lim \inf }\limits_{n \to \infty } \frac{1}{n}\log \frac{1}{{{\varepsilon _{_n}}}} \geqslant r\left( {r{\text{ > }}0} \right), \cr} $$

Keywords

Entropy Prefix Dmax Terion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Te Sun Han
    • 1
  1. 1.Graduate School of Information SystemsUniversity of Electro-CommunicationsTokyoJapan

Personalised recommendations